基于机器视觉的小贯小绿叶蝉智能识别的研究与应用

文献类型: 中文期刊

第一作者: 边磊

作者: 边磊;何旭栋;季慧华;蔡晓明;罗宗秀;陈华才;陈宗懋

作者机构:

关键词: 深度学习;目标检测;小贯小绿叶蝉;种群监测;YOLOv3

期刊名称: 茶叶科学

ISSN: 1000-369X

年卷期: 2022 年 003 期

页码: 376-386

收录情况: 北大核心 ; CSCD

摘要: 深度学习已经在农作物害虫实时监测的智能识别过程中广泛应用。以小贯小绿叶蝉(Empoasca onukii)识别模型为基础,研究深度学习在诱虫板上叶蝉识别中的应用,旨在提高小贯小绿叶蝉田间种群调查的准确性。本研究设计了一种茶园小贯小绿叶蝉的识别、计数方法,首先采用黄色诱虫板诱集小贯小绿叶蝉,利用相机对诱虫板进行图像采集并上传至服务器,然后通过服务器部署的目标检测算法,对图像中叶蝉进行识别与计数。通过算法筛选,确定YOLOv3作为识别算法,用改进后的Soft-NMS代替原来的NMS,用K-means聚类方法计算新的先验框的尺寸,提升YOLOv3对目标识别的速度和准确率。通过田间试验对比诱虫板上叶蝉的真实数量,结果显示优化后识别算法的准确率可达到95.35%以上。本研究验证了诱虫板诱集、目标识别算法和物联网技术相结合,能够为小贯小绿叶蝉田间种群的实时监测提供技术支持,可为其他具有颜色偏爱性昆虫的实时监测和茶园害虫综合治理提供参考。

分类号: S435.711%TP391.41

  • 相关文献

[1]基于改进YOLOv3的温室番茄果实识别估产方法. 成伟,张文爱,冯青春,张万豪. 2021

[2]基于性诱和深度学习的草地贪夜蛾成虫自动识别计数方法. 邱荣洲,赵健,何玉仙,陈韶萍,黄美玲,池美香,梁勇,翁启勇. 2021

[3]基于机器视觉和深度学习的稻纵卷叶螟性诱智能监测系统. 张哲宇,孙果镓,杨保军,刘淑华,吕军,姚青,唐健. 2022

[4]农业害虫检测的深度学习算法综述. 蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江. 2023

[5]基于深度学习的蚕茧种类识别研究. 石洪康,李林波,祝明辉,陈义安,马勇,张剑飞. 2023

[6]基于AlexNet的栽培苜蓿病害识别. 李云昊,李仲贤,伏帅,张忠雪,茆士琴,冯琦胜,梁天刚,李彦忠. 2023

[7]基于YOLOv4的稻田杂草目标检测算法. 袁涛,胡冬,马超,李琳一,郑秀国,钱戴玲. 2023

[8]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[9]基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法. 李明,丁智欢,赵靖暄,陈思铭,李文勇,杨信廷. 2023

[10]基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究. 戴佳兵,宋春芳,凌彩金,李臻锋,孙崇高. 2024

[11]基于YOLOv3模型的金枪鱼鱼群特征识别初步研究. 马硕,张禹,王鲁民,张勋,金卫国,王国来,常卫东. 2021

[12]大田环境下的农业害虫图像小目标检测算法. 蒋心璐,陈天恩,王聪,赵春江. 2024

[13]基于深度学习的半监督图像标注系统设计与实现. 胡明玉,夏雪,杨晨雪,曹景军,柴秀娟. 2021

[14]深度学习在蜜蜂研究中的应用. 孙逸飞,丁桂玲,路运才,刘振虎,黄家兴. 2023

[15]面向海洋渔业捕捞生产的深度学习方法应用研究进展. 张胜茂,孙永文,樊伟,唐峰华,崔雪森,伍玉梅. 2022

[16]水族馆鱼类目标检测网络优化研究. 刘洋,张胜茂,王书献,王斐,樊伟,邹国华,伯静. 2022

[17]基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 2022

[18]基于改进YOLO-V4网络的浅海生物检测模型. 毛国君,翁伟栋,朱晋德,张媛,吴富村,毛玉泽. 2021

[19]基于LW-YOLOv3模型的棉花主茎生长点检测与定位研究. 孙想,吴华瑞,朱华吉,杨雨森,陈诚,何思琪,王春山. 2021

[20]基于Yolo的结直肠息肉CT影像分析算法研究. 代国威,晏静香. 2021

作者其他论文 更多>>