面向海洋渔业捕捞生产的深度学习方法应用研究进展

文献类型: 中文期刊

第一作者: 张胜茂

作者: 张胜茂;孙永文;樊伟;唐峰华;崔雪森;伍玉梅

作者机构:

关键词: 深度学习;目标检测;渔获物识别与量测;卷积神经网络;海洋渔业捕捞生产

期刊名称: 大连海洋大学学报

ISSN: 2095-1388

年卷期: 2022 年 37 卷 004 期

页码: 683-695

收录情况: 北大核心 ; CSCD

摘要: 随着全球渔业资源不断衰退,各国渔业机构和区域渔业管理组织采用渔业观察员方式促进渔业可持续捕捞,但人类观察员方式成本高、覆盖率低,难以满足管理需要.近年来,深度学习新模型不断涌现和完善,其检测速度、精度均在不断增强,为其应用于海洋渔业捕捞生产监控提供了条件.本文从数据获取、数据预处理、算法设计、模型训练和精度评价等方面,总结了渔业捕捞生产监测模型的构建过程,以渔船与渔船行为、渔获物、渔场预报、船员和渔具为对象,综述了深度学习技术在海洋渔业捕捞中的应用,并提出利用迁移学习或强化学习等方法来拓展识别目标种类及增强检测模型、利用高精度的特征提取网络提高目标分类准确率、通过边缘计算技术解决电子监控数据实时解析及制定统一标准以规范电子监控在渔业管理中的应用等未来重点研究方向,以期为深度学习在海洋渔业捕捞生产中的推广应用提供科学参考.

分类号: S951.2

  • 相关文献

[1]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[2]基于改进YOLOv8卷积神经网络的稻田苗期杂草检测方法. 林宗缪,马超,胡冬. 2024

[3]基于改进YOLOv8卷积神经网络的蟹味菇检测方法. 林宗缪,马超,胡冬. 2024

[4]基于机器视觉和深度学习的稻纵卷叶螟性诱智能监测系统. 张哲宇,孙果镓,杨保军,刘淑华,吕军,姚青,唐健. 2022

[5]农业害虫检测的深度学习算法综述. 蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江. 2023

[6]基于深度学习的蚕茧种类识别研究. 石洪康,李林波,祝明辉,陈义安,马勇,张剑飞. 2023

[7]基于AlexNet的栽培苜蓿病害识别. 李云昊,李仲贤,伏帅,张忠雪,茆士琴,冯琦胜,梁天刚,李彦忠. 2023

[8]基于YOLOv4的稻田杂草目标检测算法. 袁涛,胡冬,马超,李琳一,郑秀国,钱戴玲. 2023

[9]基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法. 李明,丁智欢,赵靖暄,陈思铭,李文勇,杨信廷. 2023

[10]基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究. 戴佳兵,宋春芳,凌彩金,李臻锋,孙崇高. 2024

[11]基于YOLOv3模型的金枪鱼鱼群特征识别初步研究. 马硕,张禹,王鲁民,张勋,金卫国,王国来,常卫东. 2021

[12]大田环境下的农业害虫图像小目标检测算法. 蒋心璐,陈天恩,王聪,赵春江. 2024

[13]基于深度学习的半监督图像标注系统设计与实现. 胡明玉,夏雪,杨晨雪,曹景军,柴秀娟. 2021

[14]深度学习在蜜蜂研究中的应用. 孙逸飞,丁桂玲,路运才,刘振虎,黄家兴. 2023

[15]水族馆鱼类目标检测网络优化研究. 刘洋,张胜茂,王书献,王斐,樊伟,邹国华,伯静. 2022

[16]基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 2022

[17]基于改进YOLO-V4网络的浅海生物检测模型. 毛国君,翁伟栋,朱晋德,张媛,吴富村,毛玉泽. 2021

[18]深度学习方法在农业领域的研究及应用. 马聪,张建华,陈学东,朱丹. 2020

[19]基于深度卷积神经网络的红树林物种无人机监测研究. 黄亦其,刘琪,赵建晔,黄文善,孙中宇,乔曦. 2020

[20]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

作者其他论文 更多>>