Comprehensive identification of glutathione peroxidase (GPX) gene family in response to abiotic stress in pepper (Capsicum annuum L.)
文献类型: 外文期刊
第一作者: Wang, Wei
作者: Wang, Wei;Wan, Hongjian;Cheng, Yuan;Ruan, Meiying;Ye, Qingjing;Yao, Zhuping;Wang, Rongqing;Zhou, Guozhi;Wan, Hongjian;Wang, Wei;Liu, Dandan;Wan, Hongjian
作者机构:
关键词: Phylogenetic analysis; Gene expression; Abiotic stress; GPX
期刊名称:GENE ( 影响因子:3.5; 五年影响因子:3.3 )
ISSN: 0378-1119
年卷期: 2023 年 881 卷
页码:
收录情况: SCI
摘要: Plant glutathione peroxidase (GPX) plays an important role in the maintenance of cell homeostasis and in the antioxidant response in plants. In this study, the peroxidase (GPX) gene family was identified in the whole genome of pepper using bioinformatic method. As a result, a total of 5 CaGPX genes were identified, which were unevenly distributed on 3 of the 12 chromosomes of pepper genome. Based on phylogenetic analysis, 90 GPX genes in 17 species from lower plants to higher plants can be divided into 4 groups (GroupI, Group II, Group III, Group IV). The MEME Suite analysis of GPX proteins shows that all these proteins contain four highly conserved motifs, as well as other conserved sequences and amino acid residues. Gene structure analysis revealed the conservative exon-intron organization pattern of these genes. In the promoter region of CaGPX genes, many cis elements of plant hormone and abiotic stress response were identified in each of CaGPX proteins. In addition, expression patterns of CaGPX genes in different tissues, developmental stages and responses to abiotic stress were also performed. The results of qRT-PCR showed that the transcripts of CaGPX genes varied greatly under abiotic stress at different time points. There results suggest that the GPX gene family of pepper may play a role in plant development andstress response. In conclusion, our research provides new insights into the evolution of pepper GPX gene family, and understanding for functional of these genes in response to abiotic stresses.
分类号:
- 相关文献
作者其他论文 更多>>
-
Nonstructural protein 14 of PDCoV promotes complement C3 expression via the activation of p38-MAPK-C/EBP pathway
作者:Chen, Zhuoqi;Fan, Liyuan;Shang, Hongqi;Xiao, Li;Wang, Wei;Guo, Rongli;Li, Jizong;Chen, Zhuoqi;Fan, Liyuan;Shang, Hongqi;Wang, Wei;Guo, Rongli;Li, Jizong;Li, Jizong;Li, Jizong;Li, Jizong;Li, Jizong;Zhong, Chunyan
关键词:PDCoV; C3; Nsp14; Complement; C/EBP-beta
-
Genome-wide identification of Saccharum Sec14-like PITP gene family reveals that ScSEC14-1 is positively involved in disease resistance
作者:Su, Yachun;Feng, Jingfang;You, Chuihuai;Zang, Shoujian;Wang, Wei;Wang, Dongjiao;Mao, Huaying;Chen, Yao;Luo, Jun;Que, Youxiong;Su, Yachun;Su, Yachun;Sun, Tingting;Que, Youxiong
关键词:Sugarcane; Phosphatidylinositol transfer protein (PITP); Genome-wide identification; Pathogen infection; Disease resistance
-
First Report and Genetic Characterization of Border Disease Virus in Sheep from Hulunbuir, Northeastern China
作者:Yuan, Yongxu;Li, Liang;Liu, Ziyan;Liu, Quan;Wang, Zedong;Yuan, Yongxu;Liu, Ziyan;Xu, Wenbo;Liu, Ning;Sui, Liyan;Zhao, Yinghua;Liu, Quan;Wang, Zedong;Yang, Xing;Wang, Wei
关键词:
-
Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo
作者:Wu, Ximing;Wang, Wei;Wu, Ximing;Wang, Yijun;Yang, Mingchuan;Yang, Lumin;Wang, Fuming;Wu, Ximing;Wang, Ziqi;Zhang, Xiangchun;Wang, Dongxu
关键词:
-
Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications
作者:Qi, Qianhui;Wang, Wei;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Qi, Qianhui;Yu, Changmin;Wang, Nan;Zhang, Yu;Li, Xue;Li, Lin
关键词:Biodegradation; Silica nanoparticles; Stimuli -responsive; Multiple frameworks; Biological applications
-
Exploring Multi-Tissue Alternative Splicing and Skeletal Muscle Metabolism Regulation in Obese- and Lean-Type Pigs
作者:Wang, Wei;Tang, Zhonglin;Wang, Wei;Tang, Zhonglin;Wang, Wei;Li, Wangchang;Liu, Weiwei;Wang, Zishuai;Tang, Zhonglin;Li, Wangchang;Liu, Weiwei;Yang, Xiaogan;Tang, Zhonglin;Li, Wangchang;Liu, Weiwei;Wang, Zishuai;Tang, Zhonglin;Xie, Bingkun;Tang, Zhonglin
关键词:obese- and lean-type pigs; multiple tissues; transcriptome; alternative splicing; skeletal muscle metabolism
-
Research on the influence factors of sustainable development of plateau characteristic agriculture based on DEMATEL and AISM combined model
作者:Wang, Wei;Liu, Hai;Zhao, Pengfei;Han, Mo
关键词: