Semi-rational site-directed mutagenesis of phyI1s from Aspergillus niger 113 at two residue to improve its phytase activity

文献类型: 外文期刊

第一作者: Tian, Yong-Sheng

作者: Tian, Yong-Sheng;Peng, Ri-He;Xu, Jing;Zhao, Wei;Gao, Feng;Fu, Xiao-Yan;Xiong, Ai-Sheng;Yao, Quan-Hong

作者机构:

关键词: enzyme activity.;phyi1s gene;Phytase;Structure-function analysis;Internet resource.

期刊名称:MOLECULAR BIOLOGY REPORTS ( 影响因子:2.316; 五年影响因子:2.357 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Through alignment of amino acid sequences among different phytases, we found that the amino acid at residues 53 and 91 vary broadly. To prove that the amino acid at residues 53 and 91 were related to phytase specific activity, two single mutant phyI1s Q53R and K91D were obtained by site-directed mutagenesis strategy. None of the single amino acid residues in the two mutants was in a position reported to be important for catalysis or substrate binding. Kinetic analysis of the phytase activity of the two mutants (Q53R and K91D) indicated that the mutants were attributed to 2.2- and 1.5-fold increased specific activity, and a 1.47- and 1.16-fold increased affinity for sodium phytate. In addition, the overall catalytic efficiency (k cat/K m) of the two mutants was improved 4.08- and 2.84-fold compared to that of the wild type. Such mutants will be instrumental for the structure-function study of the enzyme and for industrial application.

分类号: Q7

  • 相关文献

[1]Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Li, Xin,Wu, Zhiqiang,Li, Weidong,Yan, Ruixiang,Li, Li,Li, Jun,Li, Yihang,Li, Minggang.

[2]Directed evolution of a beta-galactosidase from Pyrococcus woesei resulting in increased thermostable beta-glucuronidase activity. Xiong, Ai-Sheng,Peng, Ri-He,Zhuang, Jing,Li, Xian,Xue, Yong,Liu, Jin-Ge,Gao, Feng,Cai, Bin,Chen, Jian-Min,Yao, Quan-Hong.

[3]Directed evolution of beta-galactosidase from Escherichia coli into beta-glucuronidase. Xiong, Ai-Sheng,Peng, Ri-He,Zhuang, Jing,Liu, Jin-Ge,Xu, Fang,Cai, Bin,Guo, Zhao-Kui,Qiao, Yu-Shan,Chen, Jian-Min,Zhang, Zhen,Yao, Quan-Hong. 2007

[4]Concurrent mutations in six amino acids in beta-glucuronidase improve its thermostability. Xiong, Ai-Sheng,Peng, Ri-He,Cheng, Zong-Ming,Li, Yi,Liu, Jin-Ge,Zhuang, Jing,Gao, Feng,Xu, Fang,Qiao, Yu-Shan,Zhang, Zhen,Chen, Jian-Min,Yao, Quan-Hong. 2007

[5]Biochemical Characterization of a Psychrophilic Phytase from an Artificially Cultivable Morel Morchella importuna. Tang, Jie,Li, Xiaolin,Liu, Tianhai,Miao, Renyun,Huang, Zhongqian,Wang, Yong,Gan, Bingcheng,Peng, Weihong,Tan, Hao,Tang, Jie,Li, Xiaolin,Liu, Tianhai,Miao, Renyun,Huang, Zhongqian,Wang, Yong,Gan, Bingcheng,Peng, Weihong. 2017

[6]Transgenic rice expressing a novel phytase-lactoferricin fusion gene to improve phosphorus availability and antibacterial activity. Deng Li-hua,Weng Lu-shui,Deng Xiang-yang,Xiao Guo-ying,Wang Zuo-ping,Fu Xi-qin,Xin Ye-yun. 2017

[7]Phytase production by fermentation of recombinant Pichia pastoris in monosodium glutamate wastewater. Bai, Yingguo,Yang, Peilong,Wang, Yaru,Shi, Pengjun,Luo, Huiying,Meng, Kun,Wu, Bo,Yao, Bin.

[8]Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site. Fu, Dawei,Li, Zhongyuan,Huang, Huoqing,Yuan, Tiezheng,Shi, Pengjun,Luo, Huiying,Meng, Kun,Yang, Peilong,Yao, Bin.

[9]Effects of sodium gluconate and phytase on performance and bone characteristics in broiler chickers. Guo, Yanli,Shi, Yanghong,Li, Fadi,Zhen, Chen,Hao, Zhengli,Chen, Jilan.

[10]Vinegar production residue as substrates for phytase production by Aspergillus ficuum. Wang, Zhihong,Dong, Xiaofang,Tong, Jianming,Wu, Yingying,Zhang, Qi.

[11]Construction of transgenic Bacillus mucilaginosus strain with improved phytase secretion. Li, X,Yang, SH,Yu, XC,Jin, ZX,Li, WD,Li, L,Li, J,Li, MG.

[12]Effects of Replacing Fish Meal with Soybean Meal or Fermented and Phytase-Treated Soybean Meal Respectively, on Growth Performance, Feed Utilization, and Apparent Digestibility in Juvenile Turbot (Scophthalmus maximus L.). Zhang, Beili,He, Gen,Mai, Kangsen,Zhou, Huihui,Zhang, Beili,He, Gen,Mai, Kangsen,Zhou, Huihui,Wang, Xin,Pi, Xionge. 2016

[13]Development of a Rapid Immunochromatographic Lateral Flow Device Capable of Differentiating Phytase Expressed from Recombinant Aspergillus niger phyA2 and Genetically Modified Corn. Zhou, Xiaojin,Pu, Ling-Kui,Hui, Elizabeth,Zhang, Jun,Yu, Xiao-Lin,Tu, Zhiguan,Lin, Zhen,Zheng, Jian,Zhang, Jun,Liu, Oi,Liu, Oi,Zhane, Juan.

[14]Near-infrared reflectance Spectroscopy-based methods for phytase registration in feed industry. Yang, Haifeng,Lv, Xiaowen,Wang, Jing,Li, Junguo,Li, Hui,Qin, Yuchang.

[15]Improvement of Yersinia frederiksenii Phytase Performance by a Single Amino Acid Substitution. Fu, Dawei,Huang, Huoqing,Meng, Kun,Wang, Yaru,Luo, Huiying,Yang, Peilong,Yuan, Tiezheng,Yao, Bin.

[16]Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Zhang, G. Q.,Dong, X. F.,Wang, Z. H.,Zhang, Q.,Tong, J. M.,Wang, H. X.,Wang, H. X..

[17]High level expression of an acid-stable phytase from citrobacter freundii in pichia pastoris. Zhao, Wei,Xiong, Aisheng,Fu, Xiaoyan,Gao, Feng,Tian, Yongsheng,Peng, Rihe.

[18]Cloning, Overexpression, and Characterization of a Metagenome-Derived Phytase with Optimal Activity at Low pH. Wu, Xiang,Xie, Liyuan,Huang, Zhongqian,Gan, Bingcheng,Peng, Weihong,Tan, Hao,Wu, Xiang,Xie, Liyuan,Huang, Zhongqian,Gan, Bingcheng,Peng, Weihong.

[19]Enhancing the Thermal Resistance of a Novel Acidobacteria-Derived Phytase by Engineering of Disulfide Bridges. Miao, Renyun,Liu, Tianhai,Cao, Xuelian,Wu, Xiang,Xie, Liyuan,Huang, Zhongqian,Peng, Weihong,Gan, Bingcheng,Tan, Hao,Miao, Renyun,Liu, Tianhai,Cao, Xuelian,Wu, Xiang,Xie, Liyuan,Huang, Zhongqian,Peng, Weihong,Gan, Bingcheng.

[20]Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Wu, Xiang,Xie, Liyuan,Huang, Zhongqian,Peng, Weihong,Gan, Bingcheng,Tan, Hao,Wu, Xiang,Xie, Liyuan,Huang, Zhongqian,Peng, Weihong,Gan, Bingcheng.

作者其他论文 更多>>