Quantifying effect of maize tassels on LAI estimation based on multispectral imagery and machine learning methods
文献类型: 外文期刊
第一作者: Shao, Mingchao
作者: Shao, Mingchao;Nie, Chenwei;Shi, Liangsheng;Zha, Yuanyuan;Wu, Wenbin;Jin, Xiuliang;Shao, Mingchao;Nie, Chenwei;Yu, Xun;Bai, Yi;Liu, Shuaibing;Cheng, Minghan;Jin, Xiuliang;Shao, Mingchao;Nie, Chenwei;Xu, Honggen;Yang, Hongye;Yu, Xun;Bai, Yi;Liu, Shuaibing;Cheng, Minghan;Jin, Xiuliang;Zhang, Aijun;Lin, Tao;Cui, Ningbo;Wu, Wenbin
作者机构:
关键词: Maize tassels; Segmentation; LAI; Vegetation indices
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 211 卷
页码:
收录情况: SCI
摘要: A reliable method to estimate the leaf area index (LAI) in a field environment is crucial for precise monitoring of crop-growth status. Currently, the crop canopy information has been widely used to estimate LAI using remote sensing methods. Many studies regard canopy tassels and leaves as integrated objects, no systematic study has yet investigated how tassels affect the accuracy of LAI estimates. Moreover, the estimation accuracy and general-ization ability of the number of selected vegetation indices was seldom evaluated. Therefore, this study used deep learning segmentation methods to quantify how maize tassels affect LAI estimates and to evaluate how the number of variables affects LAI estimates. The results showed that the multispectral dataset segmentation tassels had the highest accuracy when using the VGG-encoded U-Net model (class pixel accuracy, CPA = 89.53 %; mean intersection over union, MIoU = 85.97 %). The segmentation accuracy first was increased and then decreased with tassel growth. By quantifying the contribution of tassels to the vegetation index, tassels most strongly affect the modified nonlinear vegetation index (MNLI) constructed from the canopy spectral information. Moreover, removing the tassels in images could significantly improve the accuracy of LAI estimates using the gradient-boosting decision tree method (GBDT). The estimation method obtained the highest accuracy when using nine vegetation indices to estimate the LAI (R2 = 0.816, RMSE = 0.399, rRMSE = 7.4 %). Overall, the proposed method improves the accuracy of LAI estimates, which provides crucial technical support for monitoring the LAI of maize.
分类号:
- 相关文献
作者其他论文 更多>>
-
Gibberellin-dependent pulp pigmentation in CPPU-induced parthenocarpic melon fruit: Insights from metabolome and transcriptome analysis
作者:Li, Jufen;Ren, Dandan;Lin, Tao;Zhang, Keyan;Ma, Guobin;Yan, Wenjin;Su, Ziwei;Xu, Ling;Zhu, Pinkuan
关键词:Melon; CPPU; Pulp color; Carotenoids; Transcriptome; Metabolome
-
Lactobacillus helveticus LZ-R-5 Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Enhancing Intestinal Barrier Function
作者:Zhao, Xiaogan;Lin, Tao;Jiang, Wenkai;Xiao, Luyao;Tian, Yufang;Mahsa, Ghahvechi Chaeipeima;Rui, Xin;Li, Wei;Lin, Tao;Lin, Yihan;Ma, Kai;Zhang, Changliang;Ji, Feng;Ma, Kai;Zhang, Changliang;Ji, Feng
关键词:kefir; Lactobacillus helveticus; ulcerativecolitis; short-chain fatty acid; gut microbiota
-
An eco-friendly water-soluble Cu2O@His for efficient control of citrus canker
作者:Rao, Wenhua;Gao, Shang;Li, Minyu;Shen, Chao;Lin, Tao;Fan, Guocheng;Hu, Jinfeng;Gao, Shang;Li, Minyu;Zhang, Dingyang;Pan, Xiaohong;Lou, Binghai
关键词:cuprous oxide; reactive oxygen species; plant transport; systemic cure; nanopesticide; biosafety
-
Synergistic use of stay-green traits and UAV multispectral information in improving maize yield estimation with the random forest regression algorithm
作者:Liu, Yuan;Meng, Lin;Nie, Chenwei;Liu, Yadong;Song, Yang;Jin, Xiuliang;Liu, Yuan;Fan, Kaijian;Meng, Lin;Nie, Chenwei;Liu, Yadong;Song, Yang;Jin, Xiuliang;Cheng, Minghan
关键词:UAV multispectral; Maize yield; Stay-Green Index (SGI); Machine learning; Remote sensing
-
Effect of practicing water-saving irrigation on greenhouse gas emissions and crop productivity: A global meta-analysis
作者:Tan, Mingdong;Cui, Ningbo;Jiang, Shouzheng;Xing, Liwen;Wen, Shenglin;Liu, Quanshan;Wang, Zhihui;Tan, Mingdong;Cui, Ningbo;Jiang, Shouzheng;Xing, Liwen;Wen, Shenglin;Liu, Quanshan;Wang, Zhihui;Li, Weikang;Yan, Siwei;Wang, Yaosheng;Jin, Haochen
关键词:Irrigation method; Agricultural greenhouse effect; Water use efficiency; Crop yield
-
Research on variety identification of common bean seeds based on hyperspectral and deep learning
作者:Li, Shujia;Sun, Laijun;Zhang, Lingyu;Bai, Hongyi;Wang, Ziyue;Jin, Xiuliang;Feng, Guojun
关键词:Hyperspectral; Common bean; Convolutional neural network; Deep learning
-
Estimating stomatal conductance of citrus orchard based on UAV multi-modal information in Southwest China
作者:Liu, Quanshan;Wu, Zongjun;Cui, Ningbo;Zheng, Shunsheng;Jiang, Shouzheng;Wang, Zhihui;Zhao, Lu;Liu, Quanshan;Wu, Zongjun;Cui, Ningbo;Zheng, Shunsheng;Jiang, Shouzheng;Wang, Zhihui;Zhao, Lu;Gong, Daozhi;Wang, Yaosheng;Wei, Renjuan
关键词:Stomatal conductance (Gs); UAV multimodal information; Soil moisture content (SMC); Kernel extreme learning machine (KELM); Black-winged kite algorithm (BKA); Black-winged kite algorithm (BKA)