Gene expression profiling in shoot apical meristem of Gossypium hirsutum

文献类型: 外文期刊

第一作者: M. Wu

作者: M. Wu;J. Li;S. L. Fan;M. Z. Song;C. Y. Pang;J. H. Wei;J. W. Yu;J. F. Zhang;S. X. Yu

作者机构:

关键词: Gossypium hirsutum;maturity;timing of floral transition;gene chip;differentially expressed genes;GhV1 gene

期刊名称:RUSSIAN JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:1.481; 五年影响因子:1.608 )

ISSN: 1021-4437

年卷期: 2015 年 62 卷 5 期

页码:

收录情况: SCI

摘要: Early maturity is a particularly important agronomic trait for cotton breeding in China and is determined by many morphological and phenological traits. The time of floral initiation is one of most important factors related to early maturation of cotton. The aim of this study was to identify differentially expressed (DE) genes related to floral initiation using the Arabidopsis thaliana GeneChipA (R) system on the shoot apical meristems (SAMs) of an early-maturing cotton cultivar. Compared with SAMs at 10 days, 365 genes were differentially expressed in the SAMs at 20 days. Of these, 210 and 155 transcripts were up- and down- regulated, respectively. The results of Gene Ontology (GO) annotation indicated that most genes fell into the four largest functional groups: metabolism, transposable elements, protein binding or cofactor requirements, and protein fate. These groups constituted 18.9, 11.8, 12.8 and 6.8% of the total DE genes, respectively. Many DE genes were identified, including those encoding the transcription factors SOC1-like floral activator MADS4, B3-domain containing transcription factor, MYB2, MYB85 and GHMADS-1. Our research found that the B3-domain containing transcription factor was similar to Arabidopsis genes encoding auxin response factor 36 and VERNALIZATION 1 (VRN1) and was one of 155 down-regulated 'Apex-unique' transcripts. The B3-domain containing transcription factor was 1128 bp long and was named GhV1 (GenBank accession No. GU929695). The induction of the transcripts we identified in the cotton SAM after 10 days of SD revealed that the transition to reproductive development occurred at this particular time point. These results allowed for a detailed description of temporal gene expression changes in the cotton SAM as it undergoes the floral initiation process.

分类号:

  • 相关文献

[1]cDNA Microarray on Differentially Expressed Genes of Liver Tissue Between Bulls and Steers of Simmental. Wang, Shuhui,Lian, Zhengxing,Wang, Shuhui,Zhou, Zhengkui,Huai, Yahong,Ji, Aiguo,Gao, Xue,Li, Junya,Chen, Jinbao,Xu, Shangzhong,Wang, Shuxin. 2011

[2]Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. Xue, Dawei,Deng, Xiangxiong,Zhang, Xiaoqin,Xu, Xiangbin,Qian, Qian,Xue, Dawei,Hu, Jiang,Zeng, Dali,Guo, Longbiao,Qian, Qian,Jiang, Hua,Wang, Hua. 2014

[3]Chemical compositions and volatile compounds of Tricholoma matsutake from different geographical areas at different stages of maturity. Li, Xiaolin,Zheng, Linyong,Zhang, Li,Yang, Hua,Li, Wanhua,Huang, Wenli,Zheng, Linyong. 2016

[4]Evaluation of tomato maturity by electronic nose. Gomez, Antihus Hernandez,Hu, Guixian,Wang, Jun,Pereira, Annia Garcia. 2006

[5]Tomato seeds maturity detection system based on chlorophyll fluorescence. Li, Cuiling,Wang, Xiu,Meng, Zhijun,Li, Cuiling,Wang, Xiu,Meng, Zhijun. 2016

[6]Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates. Li, Shuyan,Li, Danyang,Li, Guoxue,Zhang, Bangxi,Li, Jijin,Zhang, Bangxi.

[7]Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Tu, Yuqin,Sun, Jian,Ge, Xianhong,Li, Zaiyun,Sun, Jian.

[8]Post-flowering photoperiod effects on reproductive development and agronomic traits of long-day and short-day crops. Han, T,Wu, C,Mentreddy, RS,Zhao, J,Xu, X,Gai, J. 2005

[9]Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Xia, Zhengjun,Zhai, Hong,Liu, Baohui,Kong, Fanjiang,Yuan, Xiaohui,Wu, Hongyan,Xia, Zhengjun,Cober, Elroy R.,Harada, Kyuya. 2012

[10]Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. Pareek, Sunil,Benkeblia, Noureddine,Janick, Jules,Cao, Shifeng,Yahia, Elhadi M.. 2014

[11]Growth and flowering physiology, and developing new technologies to increase the flower numbers in the Genus Lilium. Suh, Jeung Keun,Lee, Ae Kyung,Roh, Mark S.,Wu, Xue Wei.

[12]Overcoming obstacles to interspecific hybridization between Gossypium hirsutum and G. turneri. Chen, Yu,Chen, Yu,Feng, Shouli,Zhao, Ting,Zhou, Baoliang. 2018

[13]Heterosis in yield, endotoxin expression and some physiological parameters in Bt transgenic cotton. Dong, H. Z.,Li, W. J.,Tang, W.,Li, Z. H.,Zhang, D. M.. 2007

[14]Characterization of eleven monosomic alien addition lines added from Gossypium anomalum to Gossypium hirsutum using improved GISH and SSR markers. Wang, Xiaoxiao,Wang, Yingying,Wang, Chen,Chen, Yu,Chen, Yu,Feng, Shouli,Zhao, Ting,Zhou, Baoliang,Chen, Yu. 2016

[15]Inducement and identification of chromosome introgression and translocation of Gossypium australe on Gossypium hirsutum. Wang, Yingying,Feng, Shouli,Li, Sai,Tang, Dong,Chen, Yu,Chen, Yu,Zhou, Baoliang,Chen, Yu,Chen, Yu. 2018

[16]Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.. Liu, Renzhong,Wang, Baohua,Guo, Wangzhen,Qin, Yongsheng,Zhang, Yuanming,Zhang, Tianzhen,Liu, Renzhong,Wang, Liguo. 2012

[17]Analysis of differentially expressed genes in response to endogenous cytokinins during cotton leaf senescence. P. ZHAO,N. ZHANG,Z.J. YIN,Y.D. LIU,F.F. SHEN. 2013

[18]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[19]Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Zhang, Xiaohong,Dou, Lingling,Pang, Chaoyou,Song, Meizhen,Wei, Hengling,Fan, Shuli,Wang, Chengshe,Yu, Shuxun. 2015

[20]Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis. Xiuming Wu,Fuguang Li#2;,Chaojun Zhang,Chuanliang Liu,Xueyan Zhang.

作者其他论文 更多>>