Molecular cloning and characterization of a salinity stress-induced gene encoding DEAD-box helicase from the halophyte Apocynum venetum

文献类型: 外文期刊

第一作者: H. H. Liu

作者: H. H. Liu;J. Liu;S. L. Fan;M. Z. Song;X. L. Han;F. Liu;F. F. Shen

作者机构:

关键词: genome;salinity stress

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The genes encoding DEAD-box helicases play a key role in various abiotic stresses, including temperature, light, oxygen, and salt stress. A salt-responsive gene, designated AvDH1, was isolated from the halophyte dogbane (Apocynum venetum) by using suppression subtractive hybridization and RACE (rapid amplification of cDNA ends) PCR. The deduced amino acid sequence has nine conserved helicase motifs of the DEAD-box protein family. The AvDH1 gene is present as a single copy in the dogbane genome. This gene is expressed in response to NaCl and not polyethlene glycol (PEG) nor abscisic acid, and its expression increases with time. The transcription of AvDH1 is also induced by low temperature (4 degrees C), but its accumulation first increases then decreases with time. The purified recombinant protein contains ATP-dependent DNA helicase activity, ATP-independent RNA helicase activity, and DNA- or RNA-dependent ATPase activity. The ATPase activity of AvDH1 is stimulated more by single-stranded DNA than by double-stranded DNA or RNA. These results suggested that AvDH1 belonging to the DEAD-box helicase family is induced by salinity, functions as a typical helicase to unwind DNA and RNA, and may play an important role in salinity tolerance.

分类号: Q94

  • 相关文献

[1]IMPROVED NUTRIENT UPTAKE ENHANCES COTTON GROWTH AND SALINITY TOLERANCE IN SALINE MEDIA. Dai, J. L.,Duan, L. S.,Dong, H. Z.,Dai, J. L.. 2014

[2]Unequal salt distribution in the root zone increases growth and yield of cotton. Dong, Hehzong,Kong, Xianggiang,Luo, Zhen,Li, Weijiang,Xin, Chengsong. 2010

[3]SOIL PLUS FOLIAR NITROGEN APPLICATION INCREASES COTTON GROWTH AND SALINITY TOLERANCE. Luo, Zhen,Kong, Xiangqiang,Dai, Jianlong,Dong, Hezhong.

[4]Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.). Wu, Zhiming,Bang, Guansheng,Cheng, Jiaowen,Cui, Junjie,Hu, Kailin,Xu, Xiaowan,Luo, Xirong,Chen, Xiaocui,Tang, Xiangqun,Qin, Cheng,Qin, Cheng. 2016

[5]Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Hu, Longxing,Li, Huiying,Fu, Jinmin,Pang, Huangcheng. 2012

[6]Growth and physiological response of tall oat grass to salinity stress. Wang Zan,Yang Xi,Wang Xue-Min,Gao Hong-Wen. 2011

[7]PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES TO NACl SALINITY STRESS IN THREE ROEGNERIA (POACEAE) SPECIES. Xie, Jihong,Dai, Yating,Mu, Huaibin,De, Ying,Wu, Zinian,Yu, Linqing,Ren, Weibo,Xie, Jihong,Dai, Yating,Mu, Huaibin,De, Ying,Wu, Zinian,Yu, Linqing,Ren, Weibo,Chen, Hao. 2016

[8]Effects of various salinities on Na+-K+-ATPase, Hsp70 and Hsp90 expression profiles in juvenile mitten crabs, Eriocheir sinensis. Sun, M.,Jiang, K.,Zhang, F.,Zhang, D.,Shen, A.,Jiang, M.,Shen, X.,Ma, L.,Sun, M.,Zhang, D.. 2012

[9]Integrated biomarker responses in the hepatopancreas of the bivalve, Mactra veneriformis (Reeve, 1854) from the Yellow River Estuary, China. Sun, Xuemei,Xia, Bin,Cui, Zhengguo,Chen, Bijuan. 2016

[10]Detecting Suaeda salsa L. chlorophyll fluorescence response to salinity stress by using hyperspectral reflectance. Zhang, Hao,Wang, Kelin,Song, Tongqing,Zhang, Hao,Wang, Kelin,Zeng, Fuping,Hu, Hao,Zhang, Xiaobin. 2012

[11]Isolation and characterization of GoDREB encoding an ERF-type protein in forage legume Galegae orientalis. Wang, Xuemin,Chen, Xiaofang,Wang, Zan,Gao, Hongwen,Nikolay, Dzyubenko,Vladimir, Chapurin.

[12]Proteomic response of oat leaves to long-term salinity stress. Bai, Jianhui,Qin, Yan,Wang, Yuqing,Bai, Jianhui,Liu, Jinghui,Sa, Rula,Zhang, Na,Jia, Ruizong.

[13]Diversity in D-genome synthetic hexaploid wheat association panel for seedling emergence traits under salinity stress. Khan, Zeeshan,Qazi, Javaria,Rasheed, Awais,Rasheed, Awais,Mujeeb-Kazi, Abdul.

[14]A Novel Dehydration-Responsive Element-Binding Protein from Caragana korshinskii Is Involved in the Response to Multiple Abiotic Stresses and Enhances Stress Tolerance in Transgenic Tobacco. Wang, Xuemin,Dong, Jie,Gao, Hongwen,Liu, Yun.

[15]Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress. Zeng, C. -L.,Zhou, Y.,Zeng, C. -L.,Wu, X. -M.,Liu, L.,Wang, B. -R..

[16]Analysis of the Role of the Drought-Induced Gene DRI15 and Salinity-Induced Gene SI1 in Alternanthera philoxeroides Plasticity Using a Virus-Based Gene Silencing Tool. Bai, Chao,Wang, Peng,Fan, Qiang,Wang, Le,Zhang, Zhen-Nan,Wu, Jia-He,Bai, Chao,Fu, Wei-Dong,Song, Zhen,Zhang, Guo-Liang. 2017

[17]Proteomic analysis of salt and osmotic-drought stress in alfalfa seedlings. Ma Qiao-li,Sun Yan,Kang Jun-mei,Long Rui-cai,Cui Yan-jun,Zhang Tie-jun,Xiong Jun-bo,Yang Qing-chuan,Ma Qiao-li,Xiong Jun-bo. 2016

[18]Variation in the Abundance of OsHAK1 Transcript Underlies the Differential Salinity Tolerance of an indica and a japonica Rice Cultivar. Chen, Guang,Liu, Chaolei,Gao, Zhenyu,Zhang, Yu,Zhang, Anpeng,Zhu, Li,Hu, Jiang,Ren, Deyong,Qian, Qian,Chen, Guang,Yu, Ling,Xu, Guohua. 2018

[19]Strigolactones Improve Plant Growth, Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed (Brassica napus L.) by Regulating Gene Expression. Ma, Ni,Hu, Chao,Wan, Lin,Hu, Qiong,Xiong, Junlan,Zhang, Chunlei,Ma, Ni,Zhang, Chunlei,Hu, Chao. 2017

[20]Identification and expression profile of an alpha-COPI homologous gene (COPA1) involved in high irradiance and salinity stress in Haematococcus pluvialis. Luo, Qiulan,Ning, Jingjing,Hu, Zhangli,Wang, Chaogang,Luo, Qiulan,Luo, Qiulan,Ning, Jingjing,Hu, Zhangli,Wang, Chaogang,Luo, Qiulan. 2017

作者其他论文 更多>>