Improved Hargreaves Model Based on Multiple Intelligent Optimization Algorithms to Estimate Reference Crop Evapotranspiration in Humid Areas of Southwest China
文献类型: 外文期刊
第一作者: Wu, Zongjun
作者: Wu, Zongjun;Cui, Ningbo;Hu, Xiaotao;Wu, Zongjun;Cui, Ningbo;Zhu, Bin;Zhu, Shidan;Zhao, Long;Wang, Xiukang;Wang, Yaosheng;Wang, Yaosheng
作者机构:
关键词: reference evapotranspiration; intelligent optimization algorithm; Hargreaves model; Penman– Monteith model; southwest humid region
期刊名称:ATMOSPHERE ( 影响因子:2.686; 五年影响因子:2.848 )
ISSN:
年卷期: 2021 年 12 卷 1 期
页码:
收录情况: SCI
摘要: Reference crop evapotranspiration (ET0) is an important indicator for precise regulation of crop water content, irrigation forecast formulation, and regional water resources management. The Hargreaves model (HG) is currently recognized as the simplest and most effective ET0 estimation model. To further improve the prediction accuracy of the HG model, this study is based on the data of 98 meteorological stations in southwest China (1961-2019), using artificial bee colony (ABC), differential evolution (DE) and particle swarm optimization (PSO) algorithms to calibrate the HG model globally. The standard ET0 value was calculated by FAO-56 Penman-Monteith (PM) model. We compare the calculation accuracy of 3 calibrated HG models and 4 empirical models commonly used (Hargreaves, Priestley-Taylor, Imark-Allen and Jensen-Hais). The main outcomes demonstrated that on a daily scale, the calibrated HG models (R-2 range 0.74-0.98) are more accurate than 4 empirical models (R-2 range 0.55-0.84), and ET0-PSO-HG has the best accuracy, followed by ET0-ABC-HG and ET0-DE-HG, with average R-2 of 0.83, 0.82 and 0.80, average RRMSE of 0.23 mm/d, 0.25 mm/d and 0.26 mm/d, average MAE of 0.52 mm/d, 0.53 mm/d and 0.57 mm/d, and average GPI of 0.17, 0.05, and 0.04, respectively; on a monthly scale, ET0-PSO-HG also has the highest accuracy, followed by ET0-ABC-HG and ET0-DE-HG, with median R-2 of 0.96, 0.95 and 0.94, median RRMSE of 0.16 mm/d, 0.17 mm/d and 0.18 mm/d respectively, median MAE of 0.46 mm/d, 0.50 mm/d, and 0.55 mm/d, median GPI of 1.12, 0.44 and 0.34, respectively. The calibrated HG models (relative error of less than 10.31%) are also better than the four empirical models (relative error greater than 16.60%). Overall, the PSO-HG model has the most accurate ET0 estimation on daily and monthly scales, and it can be suggested as the preferred model to predict ET0 in humid regions in southwest China regions.
分类号:
- 相关文献
作者其他论文 更多>>
-
Effect of nitrogen fertilizer management on N2O emission and NH3 volatilization from orchards
作者:Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Gong, Daozhi;Wang, Jiaxin
关键词:Nitrogen fertilizer; Management practices; Soil properties; Influencing factors; Meta-analysis
-
Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China
作者:Dong, Juan;Xing, Liwen;Cui, Ningbo;Guo, Li;Liang, Chuan;Zhao, Lu;Wang, Zhihui;Gong, Daozhi
关键词:Empirical parameter; Intelligence optimization algorithm; Radiation -based method; Humidity -based method; Temperature -based method
-
Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China
作者:Dong, Juan;Xing, Liwen;Cui, Ningbo;Zhao, Lu;Guo, Li;Wang, Zhihui;Tan, Mingdong;Du, Taisheng;Gong, Daozhi
关键词:Hybrid deep learning model; Multivariate Adaptive Regression Splines; Empirical model; Limited meteorological input; Cross-validation strategy
-
Effects of biochar amendment on root growth and plant water status depend on maize genotypes
作者:Ruan, Renjie;Wang, Yaosheng
关键词:Biochar; Root growth; Plant water status; Apoplastic pH; Potassium
-
Optimization of multi-dimensional indices for kiwifruit orchard soil moisture content estimation using UAV and ground multi-sensors
作者:Zhu, Shidan;Cui, Ningbo;Guo, Li;Jiang, Shouzheng;Wu, Zongjun;Lv, Min;Chen, Fei;Liu, Quanshan;Wang, Mingjun;Jin, Huaan;Jin, Xiuliang
关键词:Root-zone soil moisture content; UAV-Ground multi-sensor data; Ti-VIi-CWSI space; Ensemble learning model; Planted-by-planted-grid mapping
-
Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model
作者:Xing, Liwen;Cui, Ningbo;Guo, Li;Wu, Zongjun;Wen, Shenglin;Zhao, Lu;Liu, Chunwei;Zhao, Long;Jiang, Xuelian;Gong, Daozhi
关键词:Water consumption; Jarvis model; Clumping model; Soil water deficit coefficient; Whale Optimization Algorithm
-
Optimizing irrigation and nitrogen fertilizer management to improve apple yield, quality, water productivity and nitrogen use efficiency: A global meta-analysis
作者:Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Li, Mingjun;Gong, Daozhi;Fan, Junliang
关键词:Water input; Nitrogen input; Water -saving potentials; Nitrogen -saving potentials; Apple production