Exploring potential of copper and silver nano particles to establish efficient callogenesis and regeneration system for wheat (Triticum aestivum L.)
文献类型: 外文期刊
第一作者: Malik, Waqar Afzal
作者: Malik, Waqar Afzal;Iqbal, Asif;Mangi, Naimatullah;Ye, Wuwei;Malik, Waqar Afzal;Mahmood, Imran;Razzaq, Abdul;Shah, Ghulam Abbas;Afzal, Maria;Zain, Muhammad;Ditta, Allah;Asad, Saeed Ahmed;Ahmad, Ishfaq
作者机构:
关键词: Nano particles; nanotechnology; callus; tissue culture; mature embryo; explant; cytokinins; auxins
期刊名称:GM CROPS & FOOD-BIOTECHNOLOGY IN AGRICULTURE AND THE FOOD CHAIN ( 影响因子:3.444; )
ISSN: 2164-5698
年卷期:
页码:
收录情况: SCI
摘要: In vitro recalcitrance of wheat to regeneration is the major bottleneck for its improvement through callus-based genetic transformation. Nanotechnology is one of the most dynamic areas of research, which can transform agriculture and biotechnology to ensure food security on sustainable basis. Present study was designed to investigate effects of CuSO4, AgNO3 and their nanoparticles on tissue culture responses of mature embryo culture of wheat genotypes (AS-2002 and Wafaq-2001). Initially, MS-based callus induction and regeneration medium were optimized for both genotypes using various concentrations of auxin (2,4-D, IAA) and cytokinins (BAP, kinetin). The genotypes differed for embryogenic callus induction and regeneration potential. Genotype AS-2002 yielded maximum embryogenic calli in response to 3.0 mg/l 2,4-D, whereas Wafaq-2001 offered the highest embryogenic calli against 3.5 mg/l 2,4-D supplemented in the induction medium. Genotype AS-2002 showed maximum regeneration (59.33%) in response to regeneration protocol comprising 0.5 mg/l IAA, 0.3 mg/l BAP and 1.0 mg/l Kin, while Wafaq-2001 performed best in response to 0.5 mg/l IAA, 0.3 mg/l BAP and 1.5 mg/l Kin with 55.33% regeneration efficiency. The same optimized basal induction and regeneration medium for both genotypes were further used to study effects of CuSO4, AgNO3 and their nano-particles employing independent experiments. The optimized induction medium fortified with various concentrations of CuSO4 or CuNPs confirmed significant effects on frequency of embryogenic callus. Addition of either 0.020 mg/l or 0.025 mg/l CuSO4, or 0.015 mg/l CNPs showed comparable results for embryogenic callus induction and were statistically at par with embryogenic callus induction of 74.00%, 75.67% and 76.83%, respectively. Significantly higher regeneration was achieved from MS-based regeneration medium supplemented with 0.015 mg/l or 0.020 mg/l CuNPs than standard 0.025 mg/l CuSO4. In another study, the basal induction and regeneration medium were fortified with AgNO3 or AgNPs ranging from 1 to 7 mg/l along with basal regeneration media devoid of AgNO3 or AgNPs (control). The maximum embryogenic calli were witnessed from medium fortified with 3.0 mg/l or 4.0 mg/l AgNPs compared with control and rest of the treatments. The standardized regeneration medium fortified with 5.0 mg/l AgNO3 or 3.0 mg/l AgNPs showed pronounced effect on regeneration of wheat genotypes and offered maximum regeneration compared with control. The individual and combined effect of Cu and Ag nanoparticles along with control (basal regeneration media of each genotype) was also tested. Surprisingly, co-application of metallic NPs showed a significant increase in embryogenic callus formation of genotypes. Induction medium supplemented with 0.015 mg/l CuNPs + 4.0 mg/l AgNPs or 0.020 mg/l CuNPs + 2.0 mg/l AgNPs showed splendid results compared to control and other combination of Cu and Ag nanoparticles. The maximum regeneration was achieved by co-application of 0.015 mg/l CuNP and 4.0 mg/l AgNPs with 21% increment of regeneration over control. It is revealed that CuNPs and AgNPs are potential candidate to augment somatic embryogenesis and regeneration of mature embryo explants of wheat.
分类号:
- 相关文献
作者其他论文 更多>>
-
Unraveling the genetic and molecular basis of heat stress in cotton
作者:Ijaz, Aqsa;Anwar, Zunaira;Ditta, Allah;Shani, Muhammad Yousaf;Haidar, Sajjad;Khan, Muhammad Kashif Riaz;Ali, Ahmad;Ditta, Allah;Haidar, Sajjad;Khan, Sana Muhy-Ud-Din;Khan, Muhammad Kashif Riaz;Wang, Boahua;Fang, Liu
关键词:high-temperature stress; cotton; epigenetic modification; transcriptomics; multiomics
-
An analysis of lncRNAs related to fiber quality and the discovery of their target genes in a Gossypium hirsutum line with Gossypium mustelinum introgression
作者:Wang, Baohua;Ji, Meijun;Fang, Hui;Gu, Haijing;Mehari, Teame Gereziher;Han, Jinlei;Feng, Wenxiang;Wang, Kai;Huo, Xuehan;Zhang, Jingxia;Chen, Yu;Zhang, Jun;Ditta, Allah;Khan, Muhammad K. R.;Paterson, Andrew H.;Chee, Peng W.
关键词:
-
Genome-wide characterization of DNA methyltransferase family genes implies GhDMT6 improving tolerance of salt and drought on cotton
作者:Yang, Xiaomin;Yin, Zujun;Wang, Xiaoge;Zhang, Binglei;Han, Mingge;Lu, Xuke;Chen, Xiugui;Wang, Delong;Wang, Junjuan;Wang, Shuai;Guo, Lixue;Chen, Chao;Ye, Wuwei;Yang, Xiaomin;Bai, Zhigang;Sun, Liangqing;Li, Yongqi;He, Yunxin;Wang, Ning;Feng, Keyun
关键词:C5-MTase; Gossypium raimondii; Gossypium arboreum; Gossypium hirsutum; Abiotic stress
-
Systematic characterization of Gossypium GLN family genes reveals a potential function of GhGLN1.1a regulates nitrogen use efficiency in cotton
作者:Li, Xiaotong;Muhammad, Noor;Song, Meizhen;Luo, Tong;Wang, Qianqian;Song, Meizhen;Dong, Qiang;Li, Xiaotong;Gu, Yunqi;Kayoumu, Mirezhatijiang;Muhammad, Noor;Wang, Xiangru;Gui, Huiping;Luo, Tong;Wang, Qianqian;Wumaierjiang, Xieraili;Ruan, Sijia;Zhang, Xiling;Song, Meizhen;Dong, Qiang;Iqbal, Asif
关键词:Gossypium; Glutamine synthetase; Gene family; Gene expression; Nitrogen use efficiency
-
GhVIM28, a negative regulator identified from VIM family genes, positively responds to salt stress in cotton
作者:Yang, Zhining;Lu, Xuke;Fan, Yapeng;Zhang, Menghao;Wang, Lidong;Sun, Yuping;Chen, Xiao;Huang, Hui;Meng, Yuan;Liu, Mengyue;Han, Mingge;Chen, Wenhua;Zhang, Xinrui;Yu, Xin;Chen, Xiugui;Wang, Shuai;Wang, Junjuan;Zhao, Lanjie;Guo, Lixue;Ye, Wuwei;Yang, Zhining;Gao, Wenwei;Wang, Ning;Feng, Keyun;Mei, Zhengding;Peng, Fanjia
关键词:E3 ubiquitin ligase; GhVIM28; Salinity stress; Antioxidant
-
Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions
作者:Wang, Jie;Ye, Wuwei;Yin, Zujun;Wang, Jie;Ye, Wuwei;Yin, Zujun;Wu, Honghong;Wang, Yichao;Ye, Wuwei;Yin, Zujun;Kong, Xiangpei
关键词:abiotic stress; agricultural; defense system; nanoparticles; nanotechnology; oxidative stress; reactive oxygen species; toxicity
-
Transcriptomic profiling reveals salt-responsive long non-coding RNAs and their putative target genes for improving salt tolerance in upland cotton (Gossypium hirsutum)
作者:Feng, Wenxiang;Fang, Hui;Mehari, Teame Gereziher;Gu, Haijing;Wu, Ying;Jia, Mengxue;Han, Jinlei;Wang, Kai;Wang, Baohua;Guo, Lishuang;Li, Feng;Chen, Haodong;Guo, Qi;Xu, Zhenzhen;Shen, Xinlian;Ditta, Allah;Khan, Muhammad K. R.
关键词:Gossypium hirsutum; Transcriptome; LncRNA; Salt stress; VIGS