Nitrogen deposition may increase litter accumulative CO2 release in a subtropical estuarine marsh
文献类型: 外文期刊
第一作者: Hu, Weifang
作者: Hu, Weifang;Li, Guoliang;Hu, Weifang;Zeng, Congsheng;Tong, Chuan;Zhou, Jiacong;Zhang, Meiying;Chen, Yuehmin;Zhang, Linhai;Hu, Weifang;Zeng, Congsheng;Tong, Chuan;Zhou, Jiacong;Zhang, Meiying;Chen, Yuehmin;Zhang, Linhai;Lan, Xue;Zhang, Linhai
作者机构:
关键词: litter-derived CO2; litter decomposition; nitrogen addition; estuarine marsh; accumulative CO2 release
期刊名称:FRONTIERS IN MARINE SCIENCE ( 影响因子:5.247; 五年影响因子:5.72 )
ISSN:
年卷期: 2022 年 9 卷
页码:
收录情况: SCI
摘要: Microbial evolution-mediated CO2 from litter has aroused widespread concern, and knowing the factors controlling litter-derived CO2 is important when considering the effects of accumulative CO2 release from litter on the global greenhouse. We conducted a short-term N addition (6, 16, and 24 g N m(-2) yr(-1)) experiment in Cyperus malaccensis var. brevifolius (shichito matgrass) litter decomosition. Phospholipid fatty acid (PLFA) method and enzyme method were used to analysis litter microbial community composition and enzymatic activity. During a 220-day decomposition period, there was little effect of the N amendments on litter CO2 evolution rates (9.97-307.54 mu g C g(-1) h(-1)) with a notable exception regarding the increase of the high-N treatment at day 20. The accumulative CO2 release significantly increased after N addition in the medium and late phases. The facilitation effect on accumulative CO2 release by N amendments was more and more obvious over the decomposition time, especially for the low- and intermediate-N treatments. At the end of our experiment, compared with the control treatment, accumulative CO2 release increased 69.75%, 76.62%, and 39.93% for low-, intermediate-, and high-N treatments, respectively. These observations highlight that N deposition could cause high losses of litter C as CO2.
分类号:
- 相关文献
作者其他论文 更多>>
-
A MYB Transcription Factor from Brassica juncea Regulates Purple Leaves in Pak Choi (Brassica campestris L. ssp. chinensis)
作者:Wang, Xia;Zhu, Yating;Shi, Bo;Zhang, Shujiang;Zhang, Shifan;Zhang, Hui;Sun, Rifei;Zhou, Jinyan;Li, Ze;Li, Guoliang;Li, Fei;Wang, Xia;Zhu, Yating;Shi, Bo;Zhang, Shujiang;Zhang, Shifan;Zhang, Hui;Sun, Rifei;Zhou, Jinyan;Li, Ze;Li, Guoliang;Li, Fei
关键词:pak choi; purple leaf; MYB transcription factor; distant hybridization; B. juncea
-
Comparative analysis of chloroplast and mitochondrial genomes of sweet potato provides evidence of gene transfer
作者:Li, Guoliang;Zhang, Hong;Lin, Zhaomiao;Li, Huawei;Xu, Guochun;Xu, Yongqing;Ji, Rongchang;Luo, Wenbin;Qiu, Yongxiang;Qiu, Sixin;Tang, Hao
关键词:
-
Regulation by distinct MYB transcription factors defines the roles of OsCYP86A9 in anther development and root suberin deposition
作者:Huang, Xiaoyan;Li, Yiqi;Chang, Zhenyi;Yan, Wei;Wang, Changjian;Zheng, Minting;Li, Zhiai;Tang, Xiaoyan;Wu, Jianxin;Xu, Chunjue;Tang, Xiaoyan;Xu, Chunjue;Tang, Xiaoyan;Zhang, Baolei;Xia, Jixing;He, Zhaohuan;Li, Guoliang
关键词:Oryza sativa; OsMYBs; anther development; suberin
-
Vegetation restoration in the coarse-textured soil area is more conducive to the accumulation of Fe-associated C
作者:Dong, Lingbo;Li, Jiajia;Wang, Defu;Wang, Su;Wu, Jianzhao;Yu, Zhijing;Yu, Jinyuan;Li, Jiwei;Shangguan, Zhouping;Deng, Lei;Hu, Weifang;Liao, Yang;Wang, Xi;Shangguan, Zhouping;Deng, Lei;Liao, Yang;Wang, Xi;Shangguan, Zhouping;Deng, Lei
关键词:Fe-associated C; land use change; soil C sequestration; soil depth; soil Fe; soil organic matter; soil types; vegetation restoration
-
Intron retention via alternative splicing affects the thermotolerance regulation of ZmHsf17
作者:Zhang, Huaning;Meng, Xiangzhao;Ma, Zhenyu;Liu, Ran;Liu, Zihui;Duan, Shuonan;Li, Guoliang;Guo, Xiulin;Li, Ran;Zhang, Wenying
关键词:
-
Molecular characterization of a novel heat shock transcription factor gene TaHsfA2-11 and its overexpression improves thermotolerance in wheat
作者:Li, Guoliang;Liu, Zihui;Zhang, Huaning;Zhao, Baihui;Zhang, Yujie;Ma, Zhenyu;Duan, Shuonan;Meng, Xiangzhao;Guo, Xiulin;Zhao, Baihui;Zhang, Yujie
关键词:Wheat; TaHsfA2-11; Heat shock; Thermotolerance; Heat-response genes
-
Upregulation of Wheat Heat Shock Transcription Factor TaHsfC3-4 by ABA Contributes to Drought Tolerance
作者:Ma, Zhenyu;Zhao, Baihui;Zhang, Huaning;Duan, Shuonan;Liu, Zihui;Guo, Xiulin;Meng, Xiangzhao;Li, Guoliang;Zhao, Baihui
关键词:wheat; drought; abscisic acid; heat shock transcription factors; TaHsfC3-4