Biocontrol potential of volatile organic compounds produced by Streptomyces corchorusii CG-G2 to strawberry anthracnose caused by Colletotrichum gloeosporioides
文献类型: 外文期刊
第一作者: Li, Xiaojuan
作者: Li, Xiaojuan;Zhao, Yankun;Feng, Junting;Chen, Yufeng;Li, Kai;Zhang, Miaoyi;Qi, Dengfeng;Zhou, Dengbo;Wei, Yongzan;Wang, Wei;Xie, Jianghui;Zhang, Lu
作者机构:
关键词: Volatile organic compounds; Strawberry anthracnose; Biological control; Metabolomics; Flavonoids metabolism
期刊名称:FOOD CHEMISTRY ( 影响因子:8.8; 五年影响因子:8.6 )
ISSN: 0308-8146
年卷期: 2024 年 437 卷
页码:
收录情况: SCI
摘要: Colletotrichum gloeosporioides is a fungal disease of strawberry fruit. Biocontrol strategies holds tremendous promise in alleviating fruit decay. Here, 30 actinomycetes were isolated from rhizosphere soil of Calotropis gigantea. A strain labeled with CG-G2 exhibited the strongest antagonistic activity against C. gloeosporioides and was assigned as Streptomyces corchorusii. Compared to strain CG-G2 extracts, the volatile organic compounds (VOCs) had a high antifungal activity against anthracnose. These volatiles effectively inhibited mycelial growth and spore germination of C. gloeosporioides. The hyphal and conidial structure was severely destroyed. Metab-olomics analysis revealed that VOCs inhibited C. gloeosporioides via inducing flavonoids metabolism contributing to antifungal activity. Three main antagonistic compounds in VOCs were identified as methyl 2-methyl butyrate, hexanenitrile and methyl 2-Ethyl hexanoate. Especially, methyl 2-methyl butyrate demonstrated a remarkable efficacy in inhibiting fruit decay and preserving fruit quality. Hence, S. corchorusii CG-G2 will be a potential biocontrol agent for controlling anthracnose on harvested fruits.
分类号:
- 相关文献
作者其他论文 更多>>
-
Nonstructural protein 14 of PDCoV promotes complement C3 expression via the activation of p38-MAPK-C/EBP pathway
作者:Chen, Zhuoqi;Fan, Liyuan;Shang, Hongqi;Xiao, Li;Wang, Wei;Guo, Rongli;Li, Jizong;Chen, Zhuoqi;Fan, Liyuan;Shang, Hongqi;Wang, Wei;Guo, Rongli;Li, Jizong;Li, Jizong;Li, Jizong;Li, Jizong;Li, Jizong;Zhong, Chunyan
关键词:PDCoV; C3; Nsp14; Complement; C/EBP-beta
-
Genome-wide identification of Saccharum Sec14-like PITP gene family reveals that ScSEC14-1 is positively involved in disease resistance
作者:Su, Yachun;Feng, Jingfang;You, Chuihuai;Zang, Shoujian;Wang, Wei;Wang, Dongjiao;Mao, Huaying;Chen, Yao;Luo, Jun;Que, Youxiong;Su, Yachun;Su, Yachun;Sun, Tingting;Que, Youxiong
关键词:Sugarcane; Phosphatidylinositol transfer protein (PITP); Genome-wide identification; Pathogen infection; Disease resistance
-
5 mC modification of steroid hormone biosynthesis-related genes orchestrates feminization of channel catfish induced by high-temperature
作者:Xu, Siqi;Xie, Bingjie;Liu, Hongyan;Liu, Ju;Wang, Minghua;Zhong, Liqiang;Chen, Xiaohui;Zhang, Shiyong;Xu, Siqi;Liu, Hongyan;Wang, Minghua;Zhong, Liqiang;Chen, Xiaohui;Zhang, Shiyong;Chen, Xiaohui;Zhang, Shiyong;Xie, Bingjie;Chen, Xiaohui;Zhou, Jian;Zhang, Lu;Wen, Zhengyong
关键词:Temperature; Sex reversal; Methylation; srd5a2; Channel catfish
-
Involvement of Sep38β in the Insecticidal Activity of Bacillus thuringiensis against Beet Armyworm, Spodoptera exigua (Lepidoptera)
作者:Ji, Yujie;Gao, Bo;Wang, Yao;Zhang, Lu;Wu, Han;Xie, Yifan;Shi, Qiuyu;Guo, Wei;Zhao, Dan
关键词:bioinformatics analysis; expression pattern; ROS level; bacterial load; insecticidal activity; Spodoptera exigua
-
First Report and Genetic Characterization of Border Disease Virus in Sheep from Hulunbuir, Northeastern China
作者:Yuan, Yongxu;Li, Liang;Liu, Ziyan;Liu, Quan;Wang, Zedong;Yuan, Yongxu;Liu, Ziyan;Xu, Wenbo;Liu, Ning;Sui, Liyan;Zhao, Yinghua;Liu, Quan;Wang, Zedong;Yang, Xing;Wang, Wei
关键词:
-
Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo
作者:Wu, Ximing;Wang, Wei;Wu, Ximing;Wang, Yijun;Yang, Mingchuan;Yang, Lumin;Wang, Fuming;Wu, Ximing;Wang, Ziqi;Zhang, Xiangchun;Wang, Dongxu
关键词:
-
Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications
作者:Qi, Qianhui;Wang, Wei;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Shen, Qian;Geng, Jiaying;An, Weizhen;Wu, Qiong;Yu, Changmin;Qi, Qianhui;Yu, Changmin;Wang, Nan;Zhang, Yu;Li, Xue;Li, Lin
关键词:Biodegradation; Silica nanoparticles; Stimuli -responsive; Multiple frameworks; Biological applications