Chinese milk vetch incorporation inhibits nitrification by suppressing comammox Nitrospira in subtropical paddy soils
文献类型: 外文期刊
第一作者: Feng, Mengmeng
作者: Feng, Mengmeng;Lin, Yongxin;Ni, Xiangyin;Cheng, Yuheng;Sun, Luyuan;Liu, Jia;Hu, Hang-Wei;He, Zi-Yang;He, Ji-Zheng;Wang, Juntao;Wang, Juntao
作者机构:
关键词: Chinese milk vetch; Nitrification; Nitrogen mineralization; Comammox Nitrospira; Subtropical paddy soils
期刊名称:GEODERMA ( 影响因子:6.6; 五年影响因子:7.3 )
ISSN: 0016-7061
年卷期: 2025 年 461 卷
页码:
收录情况: SCI
摘要: Chinese milk vetch (Astragalus sinicus L.) incorporation (CVI), straw return (SR), and nitrogen reduction (NR) are common agricultural practices, but their impacts on soil nitrogen (N) cycling processes and associated microbial communities remain poorly understood. In this study, CVI, SR, and NR effects on soil net N mineralization and potential nitrification rates, the abundance/activity of ammonia oxidizers, and comammox Nitrospira (COMX) community structure were examined. While CVI significantly increased the net N mineralization rate and acidhydrolysable N fraction, SR and NR did not affect these values. At the same time, CVI decreased the potential nitrification rate and reduced COMX clade A amoA gene and transcript copy number, whereas SR and NR increased amoA gene copy number. DNA stable isotope probing (DNA-SIP) revealed that COMX clade A played a critical role in nitrification. COMX community richness was reduced by CVI and increased by SR. COMX community structure was also shaped by CVI, with soil NH4+-N and pH acting as two key moderators of these effects. Additionally, CVI increased the influence of deterministic processes on COMX community assembly. Together, these findings indicate that CVI enhances N mineralization while simultaneously reducing nitrification, potentially improving N retention. These results enhance our mechanistic understanding of N cycling, allowing for the optimization of fertilization strategies to balance agronomic productivity with environmental sustainability.
分类号:
- 相关文献
作者其他论文 更多>>
-
Dynamic changes in the skin transcriptome for the melanin pigmentation in embryonic chickens
作者:Leng, Dong;Feng, Chungang;Leng, Dong;Yang, Maosen;Huang, Zhiying;Li, Mengmeng;Wang, Tao;Li, Diyan;Miao, Xiaomeng;Liu, Jia;Yang, Maosen;Huang, Zhiying
关键词:chicken; skin; transcriptome; embryo; melanin pigmentation
-
Reforestation practices have varied the resilience of nosZ-type denitrifier communities: A 40-year soil chronosequence study
作者:Xiao, Haoyan;He, Lulu;Wang, Zhenyu;Fu, Yanrong;Wan, Xiaohua;Huang, Zhiqun;Yu, Hanxia;Xiao, Haoyan;Wang, Juntao;Wang, Juntao;Reynolds, Jason K.
关键词:Forest chronosequence; Microbial diversity; N 2 O emissions; nosZ -type denitrifiers; Resilience; Secondary forest
-
Genome-Wide Identification and Comprehensive Analysis of the PPO Gene Family in Glycine max and Glycine soja
作者:Song, Ziye;Dong, Yingshan;Song, Ziye;Wang, Bo;Liu, Jia;Liu, Nianxi;Yi, Zhigang;Li, Zhi;Dong, Zhimin;Zhang, Chunbao;Dong, Yingshan;Li, Yuqiu
关键词:
Glycine max ;Glycine soja ;PPO ; gene family -
Application of microalgae in remediation of heavy metal-contaminated soils and its stimulatory effect on wheat growth
作者:Liu, Jia;Liu, Yajing;Jiang, Han;Yang, Xiaokun;Wu, Yukun;Liang, Chengwei;Zhang, Xiaowen;Ye, Naihao;Zhang, Xiaowen;Ye, Naihao
关键词:Microalgae; Heavy metal-contaminated soils; Bioremediation; Soil fertility; Wheat growth
-
Autophagy promotes p72 degradation and capsid disassembly during the early phase of African swine fever virus infection
作者:Song, Jie;Li, Jiangnan;Li, Shuai;Zhao, Gaihong;Li, Tingting;Chen, Xin;Liu, Jia;Lai, Xinyu;Liu, Sitong;Zhou, Qiongqiong;Huang, Li;Weng, Changjiang;Li, Jiangnan;Li, Tingting;Huang, Li;Weng, Changjiang;Hu, Boli
关键词:African swine fever virus; p72; selective autophagy; Stub1; HSPA8; capsid disassembly
-
Roles and Regulations of Acid Invertases in Plants: Current Knowledge and Future Perspectives
作者:Liu, Jia;Cheng, Yuan;Ruan, Meiying;Ye, Qingjing;Wang, Rongqing;Yao, Zhuping;Zhou, Guozhi;Li, Zhimiao;Liu, Chenxu;Wan, Hongjian;Liu, Jia;Wan, Hongjian
关键词:acid invertases (Ac-Invs); plant physiology; hormonal regulation; environmental stress responses
-
The highly allo-autopolyploid modern sugarcane genome and very recent allopolyploidization in Saccharum
作者:Zhang, Jisen;Hua, Xiuting;Wang, Baiyu;Yu, Zehuai;Gao, Ruiting;Wang, Tianyou;Zhang, Qing;Li, Zhen;Li, Yihan;Xu, Yi;Yao, Wei;Zhang, Muqing;Chen, Baoshan;Qi, Yiying;Wang, Yongjun;Wang, Yuhao;Li, Shuangyu;Qi, Nameng;Feng, Xiaoxi;Wu, Mingxing;Du, Cuicui;Deng, Zuhu;Qi, Yongwen;Huang, Yumin;Zhang, Yixing;Mei, Jing;Pan, Haoran;Liu, Jia;Chen, Shuqi;Fang, Yaxue;Ma, Panpan;Sun, Yuanchang;Ming, Ray;Tang, Haibao;Wang, Gang;Li, Qingyun;Feng, Xiaomin;Liu, Xinlong;Wang, Jianping
关键词: