CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in Brassica napus L.
文献类型: 外文期刊
第一作者: Zaman, Qamar U.
作者: Zaman, Qamar U.;Chu, Wen;Hao, Mengyu;Shi, Yuqin;Sun, Mengdan;Sang, Shi-Fei;Mei, Desheng;Cheng, Hongtao;Liu, Jia;Li, Chao;Hu, Qiong;Zaman, Qamar U.
作者机构:
关键词: JAGGED; CRISPR/Cas9; replum; lateral organs; BnA08-JAGGED-Like-NUBBIN; pseudoseeds; pod shattering resistance; Brassica napus
期刊名称:BIOMOLECULES ( 影响因子:4.879; 五年影响因子:5.362 )
ISSN:
年卷期: 2019 年 9 卷 11 期
页码:
收录情况: SCI
摘要: Pod shattering resistance is an essential component to achieving a high yield, which is a substantial objective in polyploid rapeseed cultivation. Previous studies have suggested that the Arabidopsis JAGGED (JAG) gene is a key factor implicated in the regulatory web of dehiscence fruit. However, its role in controlling pod shattering resistance in oilseed rape is still unknown. In this study, multiplex genome editing was carried out by the CRISPR/Cas9 system on five homoeologs (BnJAG.A02, BnJAG.C02, BnJAG.C06, BnJAG.A07, and BnJAG.A08) of the JAG gene. Knockout mutagenesis of all homoeologs drastically affected the development of the lateral organs in organizing pod shape and size. The cylindrical body of the pod comprised a number of undifferentiated cells like a callus, without distinctive valves, replum, septum, and valve margins. Pseudoseeds were produced, which were divided into two halves with an incomplete layer of cells (probably septum) that separated the undifferentiated cells. These mutants were not capable of generating any productive seeds for further generations. However, one mutant line was identified in which only a BnJAG.A08-NUB-Like paralog of the JAG gene was mutated. Knockout mutagenesis in BnJAG.A08-NUB gene caused significant changes in the pod dehiscence zone. The replum region of the mutant was increased to a great extent, resulting in enlarged cell size, bumpy fruit, and reduced length compared with the wild type. A higher replum-valve joint area may have increased the resistance to pod shattering by similar to 2-fold in JAG mutants compared with wild type. Our results offer a basis for understanding variations in Brassica napus fruit by mutating JAG genes and providing a way forward for other Brassicaceae species.
分类号:
- 相关文献
作者其他论文 更多>>
-
Dynamic changes in the skin transcriptome for the melanin pigmentation in embryonic chickens
作者:Leng, Dong;Feng, Chungang;Leng, Dong;Yang, Maosen;Huang, Zhiying;Li, Mengmeng;Wang, Tao;Li, Diyan;Miao, Xiaomeng;Liu, Jia;Yang, Maosen;Huang, Zhiying
关键词:chicken; skin; transcriptome; embryo; melanin pigmentation
-
Genome-Wide Identification and Comprehensive Analysis of the PPO Gene Family in Glycine max and Glycine soja
作者:Song, Ziye;Dong, Yingshan;Song, Ziye;Wang, Bo;Liu, Jia;Liu, Nianxi;Yi, Zhigang;Li, Zhi;Dong, Zhimin;Zhang, Chunbao;Dong, Yingshan;Li, Yuqiu
关键词:
Glycine max ;Glycine soja ;PPO ; gene family -
Application of microalgae in remediation of heavy metal-contaminated soils and its stimulatory effect on wheat growth
作者:Liu, Jia;Liu, Yajing;Jiang, Han;Yang, Xiaokun;Wu, Yukun;Liang, Chengwei;Zhang, Xiaowen;Ye, Naihao;Zhang, Xiaowen;Ye, Naihao
关键词:Microalgae; Heavy metal-contaminated soils; Bioremediation; Soil fertility; Wheat growth
-
Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds
作者:Xu, Qiuhui;Wang, Jie;Wang, Dan;Lv, Xin;Fu, Li;He, Ping;Mei, Desheng;Chen, Hong;Wei, Fang;Wei, Fang
关键词:Comprehensive evaluation model; Lipidomics; Physicochemical indicators; Post-harvest ripening; Quality improvement; Rapeseeds
-
Autophagy promotes p72 degradation and capsid disassembly during the early phase of African swine fever virus infection
作者:Song, Jie;Li, Jiangnan;Li, Shuai;Zhao, Gaihong;Li, Tingting;Chen, Xin;Liu, Jia;Lai, Xinyu;Liu, Sitong;Zhou, Qiongqiong;Huang, Li;Weng, Changjiang;Li, Jiangnan;Li, Tingting;Huang, Li;Weng, Changjiang;Hu, Boli
关键词:African swine fever virus; p72; selective autophagy; Stub1; HSPA8; capsid disassembly
-
Roles and Regulations of Acid Invertases in Plants: Current Knowledge and Future Perspectives
作者:Liu, Jia;Cheng, Yuan;Ruan, Meiying;Ye, Qingjing;Wang, Rongqing;Yao, Zhuping;Zhou, Guozhi;Li, Zhimiao;Liu, Chenxu;Wan, Hongjian;Liu, Jia;Wan, Hongjian
关键词:acid invertases (Ac-Invs); plant physiology; hormonal regulation; environmental stress responses
-
The highly allo-autopolyploid modern sugarcane genome and very recent allopolyploidization in Saccharum
作者:Zhang, Jisen;Hua, Xiuting;Wang, Baiyu;Yu, Zehuai;Gao, Ruiting;Wang, Tianyou;Zhang, Qing;Li, Zhen;Li, Yihan;Xu, Yi;Yao, Wei;Zhang, Muqing;Chen, Baoshan;Qi, Yiying;Wang, Yongjun;Wang, Yuhao;Li, Shuangyu;Qi, Nameng;Feng, Xiaoxi;Wu, Mingxing;Du, Cuicui;Deng, Zuhu;Qi, Yongwen;Huang, Yumin;Zhang, Yixing;Mei, Jing;Pan, Haoran;Liu, Jia;Chen, Shuqi;Fang, Yaxue;Ma, Panpan;Sun, Yuanchang;Ming, Ray;Tang, Haibao;Wang, Gang;Li, Qingyun;Feng, Xiaomin;Liu, Xinlong;Wang, Jianping
关键词: