Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS)

文献类型: 外文期刊

第一作者: Ge, Shuai

作者: Ge, Shuai;Chen, Yuyu;Zhou, Hui;Jiang, Liwen;Yi, Youjin;Deng, Fangming;Wang, Rongrong;Ding, Shenghua

作者机构:

关键词: headspace-gas chromatography-ion mobility spectrometry; hot air drying; volatile flavor compounds; peppers

期刊名称:JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE ( 影响因子:3.638; 五年影响因子:3.802 )

ISSN: 0022-5142

年卷期: 2020 年 100 卷 7 期

页码:

收录情况: SCI

摘要: BACKGROUND Flavor plays a critical role in defining sensory and consumer acceptance of dried pepper, and it can be affected by temperature and moisture content during hot air drying (HAD). Thus, headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was used to analyze changes in volatile compounds of pepper during the HAD process with different drying temperatures. RESULTS A total of 45 volatile flavor compounds were identified, including 11 esters, 11 aldehydes, nine alcohols, five ketones, three furans, three acids, two pyrazines, and one ether. The results showed that with the loss of moisture during drying, aldehydes and alcohols decreased, esters initially increased and then decreased. However, propyl acetate, 2,3-butanediol, 2-acetylfuran, and 2-methylpyrazine increased. Moreover, drying temperature was closely related to the change of volatile flavor compounds. Aldehydes, alcohols, and some other volatile flavor compounds (methyl salicylate, ethyl acetate, 2-methylpyrazine, dipropyl disulfide) decreased with an increase of temperature (60-80 degrees C) at the same moisture content, while high temperature could promote the formation of ethyl octanoate, methyl octanoate, benzaldehyde, furfurol, acetal, 5-methylfurfural, and 2-acetylfuran. Based on principal components analysis and heat map clustering analysis, peppers dried at 70 or 80 degrees C presented similar composition, and the loss of volatile flavor compounds was more than samples died at 60 degrees C during the HAD process. CONCLUSION Overall, the flavor quality of peppers dried at 60 degrees C was better than that of other treatments during the HAD process. HS-GC-IMS was a reliable and effective means of analyzing volatile flavor compounds in peppers during the drying process. (c) 2020 Society of Chemical Industry

分类号:

  • 相关文献
作者其他论文 更多>>