Transcriptomic characterization of zebrafish larvae in response to mercury exposure

文献类型: 外文期刊

第一作者: Lu, Xing

作者: Lu, Xing;Xiang, Ying;Yang, Guohua;Zhang, Lang;Wang, Hui;Zhong, Shan;Wang, Hui;Zhong, Shan;Zhong, Shan

作者机构:

关键词: Zebrafish; Mercury; RNA-seq; Gene expression; Abcb5

期刊名称:COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY ( 影响因子:3.228; 五年影响因子:3.289 )

ISSN: 1532-0456

年卷期: 2017 年 192 卷

页码:

收录情况: SCI

摘要: Mercury is a widespread toxicant in aquatic environment that can cause deleterious effects on fish. Although a number of mercury-regulated genes have been investigated in adult fish, the transcriptional responses of fish larvae to acute mercury exposure are not well understood. In this study, RNA sequencing was used to examine the transcriptional changes in developing zebrafish larvae under a low concentration of mercuric chloride exposure from 24 to 120 hpf. Our initial results showed that a total of 142.59 million raw reads were obtained from sequencing libraries and about 86% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 391 up- and 87 down-regulated genes. Gene ontology enrichment analysis revealed that most of the differential expressed genes are closely related to the regulation of cellular process, metabolic process, multicellular organismal process, biological regulation, pigmentation, and response to stimulus. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that antigen processing and presentation was the most significantly enriched pathway. Moreover, we characterized a novel and sensitive mercury-induced ABCB (ATP- binding cassette B subfamily) transporter gene - abcb5. This gene is localized on zebrafish chromosome 16 and contains a 4014 bp open-reading frame. The deduced polypeptide is composed of 1337 amino acids and possesses most of functional domains and critical residues defined in human and mouse ABCB5/Abcb5. Functional analysis in vitro demonstrated that overexpression of zebrafish abcb5 gene can significantly decrease the cytotoxicity of mercury in LLC-PK1 cells, implying it is a potential efflux transporter of mercury. Thus, these findings provide useful insights to help further understand the transcriptional response and detoxification ability of zebrafish larvae following acute exposure to mercury. (C) 2016 Elsevier Inc. All rights reserved.

分类号:

  • 相关文献
作者其他论文 更多>>