Non-TAL Effectors From Xanthomonas oryzae pv. oryzae Suppress Peptidoglycan-Triggered MAPK Activation in Rice
文献类型: 外文期刊
第一作者: Song, Congfeng
作者: Song, Congfeng;Long, Juying;Song, Congfeng;Zhou, Junhui;Yang, Bing;Yan, Fang;Zhou, Huanbin;Yang, Bing;Yang, Bing
作者机构:
关键词: Xanthomonas; type III effector; TAL effector; non-TAL effector; MAPK; immunity; rice
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )
ISSN: 1664-462X
年卷期: 2018 年 9 卷
页码:
收录情况: SCI
摘要: Xanthomonas oryzae pv. oryzae, the causal pathogen of bacterial blight of rice, depends on its type III secretion system and associated effector proteins to grow and colonize the vascular tissues of rice plants. The type III effectors include a family of closely related transcription activator-like (TAL) effectors and the rest of diverse effectors, so-called non-TAL effectors. Our understanding of non-TAL effectors for pathogenesis in rice blight is still limited. Here we report a feasible method to rapidly detect the activation of mitogen-activated protein kinase pathway in rice mesophyll protoplasts by the X. oryzae pv. oryzae derived peptidoglycan and screen for virulent effectors that can suppress the pathogen-associated molecular pattern triggered immunity (PTI) response. Amongst 17 non-TAL effectors transiently expressed in rice cells, we found that three effectors (XopZ, XopN, and XopV) were able to suppress the peptidoglycan-triggered MAPK activation. The triple mutant of the X. oryzae pv. oryzae strain PXO99(A) lacking XopZ, XopN, and XopV showed additively reduced virulence. Adding back either of genes restored the virulence of the triple mutant. Our results demonstrate the collective and redundant ability of defense suppression by non-TAL effectors in causing bacterial blight of rice.
分类号:
- 相关文献
作者其他论文 更多>>
-
Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants
作者:Yu, Man;Kuang, Yongjie;Wang, Chenyang;Wu, Xuemei;Zhou, Xueping;Ren, Bin;Zhou, Huanbin;Yu, Man;Sun, Wenxian;Wu, Xuemei;Ren, Bin;Zhou, Huanbin;Wu, Xuemei;Zhang, Dawei;Li, Shaofang;Zhou, Xueping;Zhou, Huanbin
关键词:CRISPR; TadA variants; cytosine base editing; dual base editor; rice
-
Developing guanine base editors for G-to-T editing in rice
作者:Liu, Lang;Zhang, Zhongming;Wang, Chenyang;Yan, Fang;Zhou, Huanbin;Liu, Lang;Sun, Wenxian;Liu, Lang;Zhou, Huanbin;Zhang, Zhongming;Miao, Weiguo;Zhou, Xueping;Zhou, Huanbin
关键词:
-
The Impact of High-Temperature Stress on the Growth and Development of Tuta absoluta (Meyrick)
作者:Zhou, Junhui;Luo, Wenfang;Song, Suqin;Zhu, Xiafen;Gao, Shuaijun;He, Wei;Xu, Jianjun;Wang, Zhuhong
关键词:Tuta absoluta; high-temperature stress; survival rate; growth and development
-
Preventive effect of Cleome spinosa against cucumber Fusarium wilt and improvement on cucumber growth and physiology
作者:Zhang, Xingzhe;Meng, Xianghai;Wang, Baicheng;Yang, Bing;Zhang, Xingzhe;Liu, Dong;Zhang, Yanju;Jiao, Xiaodan;Wang, Zhen;Li, Jiwen;Sa, Rina;Zou, Chunlei
关键词:Cucumber; Fusarium wilt; Cleome spinosa; Disease resistance; ATPase
-
An inducible CRISPR activation tool for accelerating plant regeneration
作者:Zhang, Cuimei;Xu, Yujun;Zhou, Yangyan;Liu, Qikun;Tang, Yajun;Yuan, Haidi;Zhou, Junhui;Tang, Shanjie;Chen, Lei;Li, Tong;Zhang, Shuaibin;Deng, Xian;Cao, Xiaofeng;Song, Xianwei;Wang, Jianli;Wen, Hongyu;Jiang, Wenbo;Pang, Yongzhen;Deng, Xian;Song, Xianwei
关键词:inducible CRISPR activation; morphogenic gene; genetic transformation; plant regeneration
-
In Vitro Protective Effect of Pea-Derived Peptides (PPs) via the Keap1/Nrf2 Signaling Pathway on Alpha-Gliadin-Sensitizing Peptide Induced Cacao-2 Cells
作者:Gao, Bing;Yan, Fang;Wang, Chunfeng;Cui, Chenxu;Sun, Xuefeng;Wang, Fangyu;Li, Ning
关键词:antioxidant enzymes; celiac disease; free radicals scavenging; alpha-gliadin peptide; Keap1/Nrf2 pathway
-
Transcriptional Differential Analysis of Nitazoxanide-Mediated Anticanine Parvovirus Effect in F81 Cells
作者:Su, Xia;Zhou, Hongzhuan;Han, Ziwei;Xu, Fuzhou;Xiao, Bing;Zhang, Jin;Qi, Qi;Lin, Lulu;Zhang, Huanhuan;Li, Songping;Yang, Bing;Han, Ziwei;Zhang, Huanhuan;Li, Songping
关键词:canine parvovirus; nitazoxanide; RNA-seq; cell cycle