Estimation Methods for Soil Mercury Content Using Hyperspectral Remote Sensing
文献类型: 外文期刊
第一作者: Zhao, Li
作者: Zhao, Li;Hu, Yue-Ming;Zhou, Wu;Liu, Zhen-Hua v;Wang, Lu;Zhao, Li;Hu, Yue-Ming;Zhou, Wu;Liu, Zhen-Hua v;Wang, Lu;Wang, Guang-Xing;Zhao, Li;Hu, Yue-Ming;Zhou, Wu;Liu, Zhen-Hua v;Wang, Lu;Wang, Guang-Xing;Zhao, Li;Hu, Yue-Ming;Zhou, Wu;Liu, Zhen-Hua v;Wang, Lu;Wang, Guang-Xing;Hu, Yue-Ming;Pan, Yu-Chun;Shi, Zhou;Wang, Guang-Xing
作者机构:
关键词: soil heavy metal mercury content; hyperspectral remote sensing; MLR; BPNN; GA-BPNN
期刊名称:SUSTAINABILITY ( 影响因子:3.251; 五年影响因子:3.473 )
ISSN: 2071-1050
年卷期: 2018 年 10 卷 7 期
页码:
收录情况: SCI
摘要: Mercury is one of the five most toxic heavy metals to the human body. In order to select a high-precision method for predicting the mercury content in soil using hyperspectral techniques, 75 soil samples were collected in Guangdong Province to obtain the soil mercury content by chemical analysis and hyperspectral data based on an indoor hyperspectral experiment. A multiple linear regression (MLR), a back-propagation neural network (BPNN), and a genetic algorithm optimization of the BPNN (GA-BPNN) were used to establish a relationship between the hyperspectral data and the soil mercury content and to predict the soil mercury content. In addition, the feasibility and modeling effects of the three modeling methods were compared and discussed. The results show that the GA-BPNN provided the best soil mercury prediction model. The modeling R-2 is 0.842, the root mean square error (RMSE) is 0.052, and the mean absolute error (MAE) is 0.037; the testing R-2 is 0.923, the RMSE is 0.042, and the MAE is 0.033. Thus, the GA-BPNN method is the optimum method to predict soil mercury content and the results provide a scientific basis and technical support for the hyperspectral inversion of the soil mercury content.
分类号:
- 相关文献
作者其他论文 更多>>
-
Natural variation of WBR7 confers rice high yield and quality by modulating sucrose supply in sink organs
作者:Shi, Huan;Zhu, Yun;Wang, Lu;Wang, Yipei;Cheng, Shiyuan;Liu, Rongjia;Gao, Guanjun;Zhang, Qinglu;Xiao, Jinghua;Li, Yibo;Xiong, Lizhong;He, Yuqing;Yun, Peng;Li, Pingbo;Zhou, Hao;You, Aiqing
关键词:rice; map-based cloning; white-belly rate; WBR7; sucrose synthase; quality and yield
-
Analysis of the complete genome sequence of Paenibacillus sp. lzh-N1 reveals its antagonistic ability
作者:Li, Ee;Yang, Shuhan;Qu, Jie;Zhao, Li;Xin, Yuxiu;Zhu, Feng;Ma, Jingfang;Song, Feng;Li, Zhenghua;Li, Ee;Yang, Shuhan;Qu, Jie;Zhao, Li;Xin, Yuxiu;Zhu, Feng;Ma, Jingfang;Song, Feng;Li, Zhenghua;Liu, Kaiquan;Li, Ling;Ran, Kun;Sun, Xiaoli
关键词:Paenibacillus sp.; Genome sequence; Antagonistic ability; Antifungal peptides; Biofilm formation; Quorum sensing
-
A Scalable and Robust Chloroplast Genotyping Solution: Development and Application of SNP and InDel Markers in the Maize Chloroplast Genome
作者:Wang, Rui;Yang, Yang;Tian, Hongli;Yi, Hongmei;Xu, Liwen;Ge, Jianrong;Zhao, Yikun;Wang, Lu;Wang, Fengge;Lv, Yuanda;Zhou, Shiliang
关键词:chloroplast; SNP; InDel; high throughput; genotyping; maize
-
Spatiotemporal patterns and driving factors of gross primary productivity over the Mongolian Plateau steppe in the past 20 years
作者:Ding, Lei;Shi, Zhou;Chang, Jinfeng;Li, Zhenwang;Li, Zhenwang;Ding, Lei;Wang, Xu;Shen, Beibei;Shao, Changliang;Xiao, Liujun;Dong, Gang;Yu, Lu;Yu, Lu;Nandintsetseg, Banzragch;Nandintsetseg, Banzragch
关键词:Gross primary productivity; Mongolian Plateau; Grassland; Climatic factors; Human activity
-
Insights into the mechanism of L-malic acid on drip loss of chicken meat under commercial conditions
作者:Sun, Haijun;Wang, Lu;Zhu, Ruimin;Yin, Jingdong;Zhang, Xin;Yan, Xue;Chen, Meixia
关键词:Drip loss; Immune response; L-malic acid; Meat quality; Metabolome; Transcriptome
-
NUA4 histone acetylase gene LeEaf6 regulates precocity of shiitake mushroom, Lentinula edodes
作者:Wang, Lu;Gong, Wenbing;Xie, Haoyu;Xiao, Yang;Gong, Wenbing;Liu, Gaolei
关键词:Shiitake mushroom; Precocity; Fruiting; Histone acetyltransferase
-
Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images
作者:Guo, Yan;He, Jia;Zhang, Huifang;Wei, Panpan;Jing, Yuhang;Yang, Xiuzhong;Zhang, Yan;Wang, Laigang;Zheng, Guoqing;Guo, Yan;He, Jia;Zhang, Huifang;Wei, Panpan;Jing, Yuhang;Yang, Xiuzhong;Zhang, Yan;Zheng, Guoqing;Guo, Yan;Yang, Xiuzhong;Zhang, Yan;Zheng, Guoqing;Shi, Zhou;Wang, Laigang
关键词:aboveground biomass; UAV; height; transferability; BP neural network; machine learning