Estimation Methods for Soil Mercury Content Using Hyperspectral Remote Sensing
文献类型: 外文期刊
第一作者: Zhao, Li
作者: Zhao, Li;Hu, Yue-Ming;Zhou, Wu;Liu, Zhen-Hua v;Wang, Lu;Zhao, Li;Hu, Yue-Ming;Zhou, Wu;Liu, Zhen-Hua v;Wang, Lu;Wang, Guang-Xing;Zhao, Li;Hu, Yue-Ming;Zhou, Wu;Liu, Zhen-Hua v;Wang, Lu;Wang, Guang-Xing;Zhao, Li;Hu, Yue-Ming;Zhou, Wu;Liu, Zhen-Hua v;Wang, Lu;Wang, Guang-Xing;Hu, Yue-Ming;Pan, Yu-Chun;Shi, Zhou;Wang, Guang-Xing
作者机构:
关键词: soil heavy metal mercury content; hyperspectral remote sensing; MLR; BPNN; GA-BPNN
期刊名称:SUSTAINABILITY ( 影响因子:3.251; 五年影响因子:3.473 )
ISSN: 2071-1050
年卷期: 2018 年 10 卷 7 期
页码:
收录情况: SCI
摘要: Mercury is one of the five most toxic heavy metals to the human body. In order to select a high-precision method for predicting the mercury content in soil using hyperspectral techniques, 75 soil samples were collected in Guangdong Province to obtain the soil mercury content by chemical analysis and hyperspectral data based on an indoor hyperspectral experiment. A multiple linear regression (MLR), a back-propagation neural network (BPNN), and a genetic algorithm optimization of the BPNN (GA-BPNN) were used to establish a relationship between the hyperspectral data and the soil mercury content and to predict the soil mercury content. In addition, the feasibility and modeling effects of the three modeling methods were compared and discussed. The results show that the GA-BPNN provided the best soil mercury prediction model. The modeling R-2 is 0.842, the root mean square error (RMSE) is 0.052, and the mean absolute error (MAE) is 0.037; the testing R-2 is 0.923, the RMSE is 0.042, and the MAE is 0.033. Thus, the GA-BPNN method is the optimum method to predict soil mercury content and the results provide a scientific basis and technical support for the hyperspectral inversion of the soil mercury content.
分类号:
- 相关文献
作者其他论文 更多>>
-
Pan-genome bridges wheat structural variations with habitat and breeding
作者:Jiao, Chengzhi;Hao, Chenyang;Xie, Yuxin;Zhao, Li;Li, Tian;Fu, Junjie;Hou, Jian;Liu, Hongxia;Liu, Xu;Jia, Jizeng;Mao, Long;Zhang, Xueyong;Jiao, Chengzhi;Wang, Xiue;Xie, Xiaoming;Wang, Zihao;Zhang, Yuqi;Guo, Weilong;Chen, Liyang;Garg, Vanika;Chitikineni, Annapurna;Appels, Rudi;Varshney, Rajeev K.;Dwivedi, Girish;Dwivedi, Girish;Appels, Rudi
关键词:
-
Prediction of soil organic carbon fractions in tropical cropland using a regional visible and near-infrared spectral library and machine learning
作者:Dai, Lingju;Wang, Zheng;Shi, Zhou;Chen, Songchao;Dai, Lingju;Chen, Songchao;Zhuo, Zhiqing;Ma, Yuxin
关键词:Particularly particulate organic carbon; Mineral-associated organic carbon; Memory-based learning; Spatial interpolation
-
Revealing the Molecular Regulatory Mechanism of Flavonoid Accumulation in Tender Leaves of Tea Plants by Transcriptomic and Metabolomic Analyses
作者:Shan, Ruiyang;You, Xiaomei;Kong, Xiangrui;Zhang, Yazhen;Li, Xinlei;Chen, Changsong;Zhang, Yongheng;Wang, Lu;Wang, Xinchao
关键词:
Camellia sinensis ; transcriptomics; flavonoids; regulatory network -
Structural characterization and hypolipidemic activity of a hetero-galactan purified from Sanghuangporus vaninii based on modulation of TLR4/NF-κB pathway
作者:Hao, Jie;Zhu, Yanfeng;Li, Zhige;Wang, Lu;Qu, Yidi;Wang, Di;Zhang, Yongfeng;Li, Lanzhou;Wang, Di;Yu, Hailong;Qi, Liangliang
关键词:Sanghuangporus vaninii; Polysaccharide; Hypolipidemic efficacy; Inflammation; TLR4/NF-kappa B
-
Two leucine-rich repeat receptor-like kinases initiate herbivory defense responses in tea plants
作者:Jiang, Qi;Ding, Changqing;Feng, Lingjia;Wu, Zhenwei;Liu, Yujie;He, Lintong;Liu, Chuande;Wang, Lu;Zeng, Jianming;Huang, Jianyan;Ye, Meng
关键词:
-
CsCIPK20 Improves Tea Plant Cold Tolerance by Modulating Ascorbic Acid Synthesis Through Attenuation of CsCSN5-CsVTC1 Interaction
作者:Di, Taimei;Wu, Yedie;Wang, Jie;He, Mingming;Huang, Jianyan;Li, Nana;Hao, Xinyuan;Ding, Changqing;Zeng, Jianming;Yang, Yajun;Wang, Xinchao;Wang, Lu
关键词:ascorbic acid; CsCIPK20; CsVTC1; low temperature
-
CsCBF1/CsZHD9-CsMADS27, a critical gene module controlling dormancy and bud break in tea plants
作者:Hao, Xinyuan;Tang, Junwei;Chen, Yao;Huang, Chao;Zhang, Weifu;Liu, Ying;Wang, Lu;Ding, Changqing;Yang, Yajun;Wang, Xinchao;Chen, Yao;Yue, Chuan;Liu, Ying;Dai, Wenhao;Horvath, David P.
关键词:bud dormancy; bud break; MADS-box; gene function; regulatory network;
Camellia sinensis