Rhizobacterial community structure in response to nitrogen addition varied between two Mollisols differing in soil organic carbon
文献类型: 外文期刊
第一作者: Lian, Tengxiang
作者: Lian, Tengxiang;Yu, Zhenhua;Liu, Junjie;Li, Yansheng;Wang, Guanghua;Liu, Xiaobing;Jin, Jian;Lian, Tengxiang;Jin, Jian;Herbert, Stephen J.;Wu, Junjiang
作者机构:
期刊名称:SCIENTIFIC REPORTS ( 影响因子:4.379; 五年影响因子:5.133 )
ISSN: 2045-2322
年卷期: 2018 年 8 卷
页码:
收录情况: SCI
摘要: Excessive nitrogen (N) fertilizer input to agroecosystem fundamentally alters soil microbial properties and subsequent their ecofunctions such as carbon (C) sequestration and nutrient cycling in soil. However, between soils, the rhizobacterial community diversity and structure in response to N addition is not well understood, which is important to make proper N fertilization strategies to alleviate the negative impact of N addition on soil organic C and soil quality and maintain plant health in soils. Thus, a rhizo-box experiment was conducted with soybean grown in two soils, i.e. soil organic C (SOC)-poor and SOC-rich soil, supplied with three N rates in a range from 0 to 100 mg N kg(-1). The rhizospheric soil was collected 50 days after sowing and MiSeq sequencing was deployed to analyze the rhizobacterial community structure. The results showed that increasing N addition significantly decreased the number of phylotype of rhizobacteria by 12.3%, and decreased Shannon index from 5.98 to 5.36 irrespective of soils. Compared to the SOC-rich soil, the increases in abundances of Aquincola affiliated to Proteobacteria, and Streptomyces affiliated to Actinobacteria were greater in the SOC-poor soil in response to N addition. An opposite trend was observed for Ramlibacter belong to Proteobacteria. These results suggest that N addition reduced the rhizobacterial diversity and its influence on rhizobacterial community structure was soil-specific.
分类号:
- 相关文献
作者其他论文 更多>>
-
The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae
作者:Chen, Xi;Sun, Yan;Yang, Yu;Zhao, Yuxin;Zhang, Chuanzhong;Fang, Xin;Gao, Hong;Zhao, Ming;He, Shengfu;Song, Bo;Liu, Shanshan;Xu, Pengfei;Zhang, Shuzhen;Chen, Xi;Wu, Junjiang;Zhang, Shuzhen;Xu, Pengfei;Zhang, Shuzhen;Wu, Junjiang
关键词:EIN3-binding sequence; ethylene; GmEIL1; Phytophthora root rot of soybean
-
Different long-term fertilization regimes affect soil protists and their top-down control on bacterial and fungal communities in Mollisols
作者:Hu, Xiaojing;Gu, Haidong;Liu, Junjie;Jin, Jian;Wang, Guanghua;Wei, Dan;Zhou, Baoku;Chen, Xueli;Zhu, Ping;Cui, Xi'an;Wei, Dan;Wang, Guanghua
关键词:Fertilization; Protistan community; Functional group; Inter-kingdom interactions; Mollisols
-
Transcriptome and Metabolome Analysis of Rice Cultivar CBB23 after Inoculation by Xanthomonas oryzae pv. oryzae Strains AH28 and PXO99A
作者:Chen, Pingli;Liu, Qing;Liu, Junjie;Sun, Bingrui;Mao, Xingxue;Jiang, Liqun;Zhang, Jing;Lv, Shuwei;Yu, Hang;Liu, Wei;Li, Chen;Wang, Junjie;Mo, Qiaoping;Chen, Weixiong
关键词:Xanthomonas oryzae; Xa23; AH28; RNA-seq; metabolome
-
Alfalfa with Forage Crop Rotation Alleviates Continuous Alfalfa Obstacles through Regulating Soil Enzymes and Bacterial Community Structures
作者:Xu, Yanxia;Yang, Zhao;Wang, Xiaolong;Li, Shasha;Chai, Hua;Wang, Ruoding;Liu, Zhuxiu;Liu, Xiaobing;Liu, Junjie;Shen, Zhongbao;Fu, Xuepeng
关键词:alfalfa crop rotation; continuous cropping obstacles; soil chemical properties; enzyme activities; bacterial community structure
-
Integrative analysis of the transcriptome and metabolome provides insights into polysaccharide accumulation in Polygonatum odoratum (Mill.) Druce rhizome
作者:Pan, Gen;Jin, Jian;Liu, Hao;Zhong, Can;Xie, Jing;Zhang, Shuihan;Pan, Gen;Qin, Yuhui;Pan, Gen
关键词:Polygonatum Odoratum (Mill.) Druce; Polysaccharide accumulation; Transcriptome; Metabolome
-
The MYB Transcription Factor GmMYB78 Negatively Regulates Phytophthora sojae Resistance in Soybean
作者:Gao, Hong;Ma, Jia;Zhao, Yuxin;Zhang, Chuanzhong;Zhao, Ming;He, Shengfu;Sun, Yan;Fang, Xin;Chen, Xiaoyu;Ma, Kexin;Pang, Yanjie;Gu, Yachang;Dongye, Yaqun;Xu, Pengfei;Zhang, Shuzhen;Wu, Junjiang
关键词:GmMYB78; soybean; Phytophthora sojae; jasmonic acid; GmbHLH122; GmbZIP25
-
Identification of Increased Grain Length 1 (IGL1), a novel gene encoded by a major QTL for modulating grain length in rice
作者:Niu, Jiayu;Wang, Fei;Yang, Chengcheng;Ye, Qiwen;Huang, Jingxian;La, Yumei;Wang, Qianqian;Hu, Tiange;Sang, Liran;Chen, Huhui;La, Honggui;Dai, Jie;Zhang, Peijiang;Zou, Yu;Zhai, Zhaoyu;Jin, Jian;Abdulmajid, Dina;Guo, Jingjing
关键词: