文献类型: 外文期刊
第一作者: Eryong Chen
作者: Eryong Chen;Xueyan Zhang;Zuoren Yang;Chaojun Zhang;Xiaoqian Wang;Xiaoyang Ge;Fuguang Li
作者机构:
关键词: ABA; Brassinosteroid (BR); Cotton (Gossypium hirsutum L; ); Drought stress; pag1; Proteomic
期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )
ISSN: 1471-2229
年卷期: 2019 年 19 卷
页码:
收录情况: SCI
摘要: BackgroundBrassinosteroids (BRs) play crucial roles in drought tolerance, but the underlying molecular mechanisms remain unclear in the important oilseed and fiber crop, cotton (Gossypium hirsutum L.).ResultsTo elucidate how BRs mediate drought tolerance in cotton, a cotton brassinosteroid (BR)-deficient mutant, pag1 (pagoda1), was employed for analysis. Importantly, the pag1 mutant showed increased sensitivity to drought stress, with shorter primary roots and fewer lateral roots. The number of stomata was significantly increased in the mutant, and the stomata aperture was much wider than that of the control plants. These mutant plants therefore showed an increased water loss rate. Furthermore, the abscisic acid (ABA) content, photosynthetic efficiency and starch content of the mutant were significantly lower than those of the wild type. The overall performance of the mutant plants was worse than that of the wild-type control under both normal and drought conditions. Moreover, Proteomic analysis revealed reduced levels of stress-related proteins in pag1 plants.ConclusionsThese results suggest that BRs may modulate the drought tolerance of cotton by regulating much genes that related to drought stress and multiple organ responses to drought, including root growth, stomata development, the stomata aperture and photosynthesis. This study provides an important basis for understanding drought resistance regulated by BRs and cultivating drought-resistant cotton lines.
分类号:
- 相关文献
作者其他论文 更多>>
-
An Arabidopsis E3 ligase HUB2 increases histone H2B monoubiquitination and enhances drought tolerance in transgenic cotton
作者:Hong Chen;Hao Feng;Xueyan Zhang;Chaojun Zhang;Tao Wang;Jiangli Dong
关键词:Gossypium hirsutum Linn.; HISTONE MONOUBIQUITINATION 2 (HUB2); drought; transgenic plants; histone monoubiquitination; histone methylation
-
Identification of Histone H3 (HH3) Genes in Gossypium hirsutum Revealed Diverse Expression During Ovule Development and Stress Responses
作者:Ghulam Qanmber;Faiza Ali;Lili Lu;Huijuan Mo;Shuya Ma;Zhi Wang;Zuoren Yang
关键词:Gossypium hirsutum; GhHH3; phylogenetic analysis; gene duplication; cis-elements; expression pattern; abiotic stress; phytohormonal stress
-
Genome-Wide Identification and Characterization of the PERK Gene Family in Gossypium hirsutum Reveals Gene Duplication and Functional Divergence
作者:Ghulam Qanmber;Ji Liu;Daoqian Yu;Zhao Liu;Lili Lu;Huijuan Mo;Shuya Ma;Zhi Wang;Zuoren Yang
关键词:G; hirsutum; GhPERK; sequence logos; phylogenetic analysis; cis-elements; gene duplication; abiotic stress; phytohormone stress
-
Enhanced resistance to Verticillium dahliae mediated by an F-box protein GhACIF1 from Gossypium hirsutum
作者:Xiancai Li;Yun Sun;Nana Liu;Ping Wang;Yakun Pei;Di Liu;Xiaowen Ma;Xiaoyang Ge;Fuguang Li;Yuxia Hou
关键词:GhACIF1; Verticillium dahlia; Resistance; VIGS; Elicitor
-
Functional Characterization of Target of Rapamycin Signaling in Verticillium dahliae
作者:Linxuan Li;Tingting Zhu;Yun Song;Xiumei Luo;Li Feng;Fengping Zhuo;Fuguang Li;Maozhi Ren1
关键词:rapamycin; target of rapamycin; pathogenicity; Verticillium dahliae; Verticillium wilt
-
Target of Rapamycin (TOR) Regulates the Expression of IncRNAs in Response to Abiotic Stresses in Cotton
作者:Yun Song;Linxuan Li;Zhaoen Yang;Ge Zhao;Xueyan Zhang;Lingling Wang;Lei Zheng;Fengping Zhuo;Huan Yin;Xiaoyang Ge;Chaojun Zhang;Zuoren Yang;Maozhi Ren;Fuguang Li
关键词:target of rapamycin; expression pattern; stress response; cotton; long non-coding RNA
-
Transcriptome profiling of Gossypium arboreum during fiber initiation and the genome-wide identification of trihelix transcription factors
作者:Huijuan Mo;Lingling Wang;Shuya Ma;Daoqian Yu;Lili Lu;Zhaoen Yang;Zuoren Yang;Fuguang Li
关键词:Gossypium arboretum; Fiber initiation; Transcriptome; Trihelix transcription factor family; Phylogenetic; qRT-PCR