Transcriptome profiling of Gossypium arboreum during fiber initiation and the genome-wide identification of trihelix transcription factors
文献类型: 外文期刊
第一作者: Huijuan Mo
作者: Huijuan Mo;Lingling Wang;Shuya Ma;Daoqian Yu;Lili Lu;Zhaoen Yang;Zuoren Yang;Fuguang Li
作者机构:
关键词: Gossypium arboretum; Fiber initiation; Transcriptome; Trihelix transcription factor family; Phylogenetic; qRT-PCR
期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )
ISSN: 0378-1119
年卷期: 2019 年 709 卷
页码:
收录情况: SCI
摘要: Cotton fiber initiation is the first step in fiber development, and it determines the yield. Here, genome-wide transcriptome profiling of Gossypium arboreum was performed to determine the molecular basis of cotton fiber initiation. A comparison of the transcriptomes of fiber-bearing ovules at -0.5, 0, 0.5, 1, 1.5, 2, 2.5 and 3 d post-anthesis detected 12,049 differentially expressed genes that mainly participated in ribosome, carbon metabolism and amino acid biosynthesis pathways. Genes encoding alcohol dehydrogenase 1 and hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase, involving in fatty acid degradation and flavonoid biosynthesis, were enriched. Furthermore, 1049 differentially expressed transcription factors were identified. Among these, 17 were trihelix family transcription factors, which play important roles in plant development and responses to biotic and abiotic stresses. In total, 52 full-length trihelix genes, named as GaGTs, were identified in G. arboreum and located in 12 of the 13 cotton chromosomes. Transcriptomic data and a quantitative real-time PCR analysis indicated that several GaGTs were significantly induced during fiber initiation in G. arborewn. Thus, the genome-wide comprehensive analysis of gene expression in G. arboreum fiber initiation will serve as a useful resource for unraveling the functions of specific genes. The phylogenetic relationships and expression analyses of the G. arboreum trihelix genes established a solid foundation for future comprehensive functional analyses of the GaGTs.
分类号:
- 相关文献
作者其他论文 更多>>
-
Identification of Histone H3 (HH3) Genes in Gossypium hirsutum Revealed Diverse Expression During Ovule Development and Stress Responses
作者:Ghulam Qanmber;Faiza Ali;Lili Lu;Huijuan Mo;Shuya Ma;Zhi Wang;Zuoren Yang
关键词:Gossypium hirsutum; GhHH3; phylogenetic analysis; gene duplication; cis-elements; expression pattern; abiotic stress; phytohormonal stress
-
Genome-Wide Identification and Characterization of the PERK Gene Family in Gossypium hirsutum Reveals Gene Duplication and Functional Divergence
作者:Ghulam Qanmber;Ji Liu;Daoqian Yu;Zhao Liu;Lili Lu;Huijuan Mo;Shuya Ma;Zhi Wang;Zuoren Yang
关键词:G; hirsutum; GhPERK; sequence logos; phylogenetic analysis; cis-elements; gene duplication; abiotic stress; phytohormone stress
-
Enhanced resistance to Verticillium dahliae mediated by an F-box protein GhACIF1 from Gossypium hirsutum
作者:Xiancai Li;Yun Sun;Nana Liu;Ping Wang;Yakun Pei;Di Liu;Xiaowen Ma;Xiaoyang Ge;Fuguang Li;Yuxia Hou
关键词:GhACIF1; Verticillium dahlia; Resistance; VIGS; Elicitor
-
Functional Characterization of Target of Rapamycin Signaling in Verticillium dahliae
作者:Linxuan Li;Tingting Zhu;Yun Song;Xiumei Luo;Li Feng;Fengping Zhuo;Fuguang Li;Maozhi Ren1
关键词:rapamycin; target of rapamycin; pathogenicity; Verticillium dahliae; Verticillium wilt
-
Target of Rapamycin (TOR) Regulates the Expression of IncRNAs in Response to Abiotic Stresses in Cotton
作者:Yun Song;Linxuan Li;Zhaoen Yang;Ge Zhao;Xueyan Zhang;Lingling Wang;Lei Zheng;Fengping Zhuo;Huan Yin;Xiaoyang Ge;Chaojun Zhang;Zuoren Yang;Maozhi Ren;Fuguang Li
关键词:target of rapamycin; expression pattern; stress response; cotton; long non-coding RNA
-
BR deficiency causes increased sensitivity to drought and yield penalty in cotton
作者:Eryong Chen;Xueyan Zhang;Zuoren Yang;Chaojun Zhang;Xiaoqian Wang;Xiaoyang Ge;Fuguang Li
关键词:ABA; Brassinosteroid (BR); Cotton (Gossypium hirsutum L; ); Drought stress; pag1; Proteomic
-
GhABP19, a Novel Germin-Like Protein From Gossypium hirsutum, Plays an Important Role in the Regulation of Resistance to Verticillium and Fusarium Wilt Pathogens
作者:Yakun Pei;Xiancai Li;Yutao Zhu;Xiaoyang Ge;Yun Sun;Nana Liu;Yujiao Jia;Fuguang Li;Yuxia Hou
关键词:germin-like protein; Gossypium hirsutum; Verticillium dahliae; Fusarium oxysporum; superoxide dismutase; disease resistance