Effects of cold-hardening on chilling-induced photoinhibition of photosynthesis and on xanthophyll cycle pigments in sweet pepper

文献类型: 外文期刊

第一作者: Liu, P

作者: Liu, P;Meng, QW;Zou, Q;Zhao, SJ;Liu, QZ

作者机构:

关键词: Acclimation;Antheraxanthin;Capsicum annuum;Chlorophyll fluorescence;Low-temperature photoinhibition;Chlorophyll fluorescence;Growth;temperature;Spinach leaves;Photosystem-ii;Light stress;Zea-mays;Susceptibility;Recovery;Maize

期刊名称:PHOTOSYNTHETICA ( 影响因子:3.189; 五年影响因子:3.38 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Two cultivars of Capsicum annuum L. were acclimated for 5 d at sub-optimal temperature (14 C) and irradiance of 250 mumol m(-2) s(-1). This cold-hardening resulted in some reduction in the extent of photoinhibition during an 8 h exposure to high irradiance at 4 degreesC. Obvious differences were observed between non-hardened leaves (NHL) and cold-hardened leaves (CHL) in the recovery under low irradiance at room temperature. The CHL of both cultivars recovered faster than NHL, especially during the initial fast phase of recovery. Compared with NHL, the total content of carotenoids (Cars), based on chlorophyll, Chl (a+b), and the proportions of xanthophyll cycle pigments referred to total Cars increased in CHL, mainly due to an increase of violaxanthin (V) + antheraxanthin (A) + zeaxanthin (Z) content per mol Chl (a+b). Faster development and a higher non-photochemical quenching (NPQ) of Chl fluorescence, related to a stronger deepoxidation of the larger xanthophyll cycle pool in NHL, could act as a major defence mechanism to reduce the formation of reactive oxygen species during severe chilling. This is suggested by higher content of Z or Z+A in photoinhibition as well as by its rapid decline during the initial fast phase of recovery. In contrast to the chilling-sensitive ev. 0004, the chilling-tolerant ev. 1141 did more easily acclimate its photosynthetic apparatus to low temperatures.

分类号: Q94

  • 相关文献

[1]The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Li, XG,Meng, QW,Jiang, GQ,Zou, Q.

[2]Some photosynthetic responses to salinity resistance are transferred into the somatic hybrid descendants from the wild soybean Glycine cyrtoloba ACC547. Yang, Yong,Yan, Cheng-Qi,Cao, Bao-Hua,Xu, Hong-Xia,Chen, Jian-Ping,Jiang, De-An.

[3]Cooperation of xanthophyll cycle with water-water cycle in the protection of photosystems 1 and 2 against inactivation during chilling stress under low irradiance. Li, XG,Bi, YP,Zhao, SJ,Meng, QW,Zou, Q,He, QW. 2005

[4]Effect of abiotic stress on the gameophyte of Pyropia katadae var. hemiphylla (Bangiales, Rhodophyta). Wang, Wen-Jun,Sun, Xiu-Tao,Liu, Fu-Li,Liang, Zhou-Rui,Zhang, Ji-Hong,Wang, Fei-Jiu.

[5]Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Sun, Changhui,Liu, Min,Wang, Yiqin,Cheng, Zhukuan,Chu, Chengcai,Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Sun, Changhui,Liu, Min,Wang, Yiqin,Cheng, Zhukuan,Chu, Chengcai,Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Qian, Qian,Sun, Lei,Zhang, Yan,Lu, Qingtao,Lu, Congming,Han, Bin,Chen, Fan.

[6]Phytotoxicity of atrazine to emergent hydrophyte, Iris pseudacorus L.. Wang, Qinghai,Li, Cui,Xiao, Bo,Que, Xiaoe.

[7]Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Li, XG,Wang, XM,Meng, QW,Zou, Q.

[8]PROTOPLASMIC FACTORS, ANTIOXIDANT RESPONSES, AND CHILLING RESISTANCE IN MAIZE. ZHANG, JX,CUI, SP,LI, JM,WEI, JK,KIRKHAM, MB.

[9]Acclimation of bloom-forming and perennial seaweeds to elevated pCO(2) conserved across levels of environmental complexity. Xu, Dong,Lin, Fan,Zhang, Xiao W.,Fan, Xiao,Teng, Lin H.,Wang, Yi T.,Zhuang, Zhi M.,Ye, Naihao,Xu, Dong,Ye, Naihao,Schaum, Charlotte-Elisa,Sun, Ke,Sun, Ke,Munroe, James R..

[10]Differential growth response and carbohydrate metabolism of global collection of perennial ryegrass accessions to submergence and recovery following de-submergence. Yu, Xiaoqing,Jiang, Yiwei,Luo, Na,Yan, Jiapei,Tang, Jinchi,Liu, Shuwei. 2012

[11]Ferredoxin-quinone reductase benefits cyclic electron flow around photosystem 1 in tobacco leaves upon exposure to chilling stress under low irradiance. Li, X. -G.,Xu, P. -L.,Zhao, J. -P.,Meng, J. -J.,He, Q. -W.. 2006

[12]Photochemical and antioxidative responses of the glume and flag leaf to seasonal senescence in wheat. Kong, Lingan,Sun, Mingze,Xie, Yan,Wang, Fahong,Zhao, Zhendong,Sun, Mingze. 2015

[13]Response of the eelgrass (Zostera marina L.) to the combined effects of high temperatures and the herbicide, atrazine. Gao, Yaping,Fang, Jianguang,Du, Meirong,Fang, Jinghui,Jiang, Weiwei,Jiang, Zengjie,Gao, Yaping,Jiang, Weiwei,Fang, Jianguang,Du, Meirong,Fang, Jinghui,Jiang, Zengjie,Gao, Yaping. 2017

[14]IMPACT OF TREE-THINNING ON FOLIAR CHLOROPHYLL FLUORESCENCE PARAMETERS OF OPEN-CENTRAL APPLE TREES. Niu, Zimian,Xie, Peng,Yu, Lu,Li, Zhiqiang,Wang, Hongning,Han, Pingping. 2015

[15]Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomata! Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light. Wang, Jun,Lu, Wei,Tong, Yuxin,Yang, Qichang,Wang, Jun,Lu, Wei,Tong, Yuxin,Yang, Qichang. 2016

[16]Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C-4 genes. Huang, XQ,Jiao, DM,Chi, W,Ku, MSB. 2002

[17]The characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Jiao, DM,Li, X,Huang, XQ,Wei, C,Kuang, TY,Maurice, KSB. 2001

[18]Use of chlorophyll fluorescence and P700 absorbance to rapidly detect glyphosate resistance in goosegrass (Eleusine indica). Zhang Tai-jie,Feng Li,Tian Xing-shan,Yang Cal-hong,Gao Jia-dong. 2015

[19]Photoprotective effects of high level expression Of C(4) phosphoenolpyruvate carboxylase in transgenic rice during photoinhibition. Jiao, DM,Li, X,Ji, BH. 2005

[20]Cucumber (Cucumis sativus L.) seed performance as influenced by ovary and ovule position. Jing, HC,Bergervoet, JHW,Jalink, H,Klooster, M,Du, SL,Bino, RJ,Hilhorst, HWM,Groot, SPC. 2000

作者其他论文 更多>>