Identification of Quantitative Trait Loci for Anthesis-Silking Interval and Yield Components Under Drought Stress in Maize

文献类型: 外文期刊

第一作者: Li, XH

作者: Li, XH;Liu, XD;Li, MS;Zhang, SH

作者机构:

关键词: Zea mays;drought stress;anthesis-silking interval;ear setting;grain yield

期刊名称:ACTA BOTANICA SINICA ( 影响因子:0.599; )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A genetic linkage map with 89 SSR marker loci was constructed based on a maize (Zea mays L.) population consisting of 184 F_2 individuals from the cross, Huangzao 4*Ye 107. The 184 F_3 families were evaluated in the field under well-watered and drought-stressed regimes in Shanxi Province of China. The objectives of the study were to identify genetic segments responsible for the expression of anthesissilking interval (ASI), ear setting and grain yield, and to examine if the quantitative trait loci (QTLs) for ASI or yield components can be used in marker-assisted selection (MAS) to improve grain yield under drought conditions. Results showed that under well-watered and drought-stressed regimes, three and two QTLs involved in the expression of ASI were detected on chromosomes 1, 2 and 3, and 2 and 5, respectively. Under well-watered regime, two QTLs for ear setting were detected on chromosomes 3 and 6, explaining about 19.9% of the phenotypic variance, and displayed additive and partial dominant effects, respectively. Under drought-stressed condition, four QTLs for ear setting were detected on chromosomes 3, 7 and 10, which were responsible for interpreting 60.4% of the phenotypic variance, and shoed dominant or partial dominant effects. Under well-watered condition, four QTLs controlling grain yield were identified on chromosomes 3, 6 and 7, while five QTLs were identified under drought stress on chromosmes 1, 2, 4 and 8. The gene action was of additive or partial dominant effects, and each QTL could explain 7.3% to 22.0% of the phenotypic variance, respectively. Under drought conditions. ASI and ear setting percentage were highly correlated with grain yield, which can be used as secondary traits for grain yield selection. Based on linked markers detected and gene action analyzed, an MAS strategy for yield improvement under drought condition could be established, which consists of QTLs contributing to decreased ASI and to increased ear setting and grain yield, respectively.

分类号: Q94

  • 相关文献

[1]A proposed selection criterion for drought resistance across multiple environments in maize. Hao, Zhuan-Fang,Li, Xin-Hai,Su, Zhi-Jun,Xie, Chuan-Xiao,Li, Ming-Shun,Weng, Jian-Feng,Zhang, De-Gui,Li, Liang,Zhang, Shi-Huang,Liang, Xiao-Ling,Li, Liang.

[2]Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Min, Haowei,Chen, Chengxuan,Wei, Shaowei,Shang, Xiaoling,Sun, Meiyun,Xia, Ran,Chen, Huabang,Xie, Qi,Min, Haowei,Chen, Chengxuan,Wei, Shaowei,Shang, Xiaoling,Sun, Meiyun,Xia, Ran,Chen, Huabang,Xie, Qi,Liu, Xiangguo,Hao, Dongyun. 2016

[3]Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). Li, Hui-Yong,Wang, Tian-Yu,Shi, Yun-Su,Fu, Jun-Jie,Song, Yan-Chun,Wang, Guo-Ying,Li, Yu.

[4]Zea mays NAC transcription factor family members: their genomic characteristics and relationship with drought stress. Li, Liang,Ma, Yiwen,Li, Liang,Ma, Yiwen,Zhang, Shihuang,Hao, Zhuanfang,Li, Xinhai. 2015

[5]Trends in drought tolerance in Chinese maize cultivars from the 1950s to the 2000s. Sun, Qi,Zhang, Degui,Li, Xinhai,Hao, Zhuanfang,Weng, Jianfeng,Li, Mingshun,Zhang, Shihuang,Sun, Qi,Liang, Xiaoling.

[6]Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Lu, Yanli,Shah, Trushar,Farkhari, Mohammad,Xu, Yunbi,Lu, Yanli,Cao, Moju,Rong, Tingzhao,Xu, Yunbi,Farkhari, Mohammad,Ribaut, Jean-Marcel.

[7]Low-nitrogen stress tolerance and nitrogen agronomic efficiency among maize inbreds: comparison of multiple indices and evaluation of genetic variation. Li, Xinhai,Li, Mingshun,Zhang, Degui,Hao, Zhuanfang,Weng, Jianfeng,Xu, Yunbi,Bai, Li,Zhang, Shihuang,Xie, Chuanxiao,Wu, Yongshen,Liu, Wenguo,Xu, Yunbi,Xu, Yunbi.

[8]Expression of Foreign Genes Demonstrates the Effectiveness of Pollen-Mediated Transformation in Zea mays. Yang, Liyan,Cui, Guimei,Wang, Yixue,Hao, Yaoshan,Du, Jianzhong,Wang, Changbiao,Zhang, Huanhuan,Wu, Shu-Biao,Sun, Yi,Yang, Liyan,Zhang, Hongmei,Wu, Shu-Biao,Sun, Yi. 2017

[9]Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Li, Y,Shi, YS,Cao, YS,Wang, TY. 2004

[10]Genome-wide association study (GWAS) of resistance to head smut in maize. Wang, Ming,Yan, Jianbing,Zhang, Xiaobo,Xiao, Yannong,Zheng, Yonglian,Zhao, Jiuran,Song, Wei. 2012

[11]Analysis of Extreme Phenotype Bulk Copy Number Variation (XP-CNV) Identified the Association of rp1 with Resistance to Goss's Wilt of Maize. Hu, Ying,Ren, Jie,Umana, Arnoldo A.,Le, Ha,Danilova, Tatiana,Liu, Sanzhen,Peng, Zhao,White, Frank F.,Fu, Junjie,Wang, Haiyan,Robertson, Alison,Hulbert, Scot H.,Umana, Arnoldo A.. 2018

[12]Maize ZmRACK1 Is Involved in the Plant Response to Fungal Phytopathogens. Wang, Baosheng,Yu, Jingjuan,Zhu, Dengyun,Chang, Yujie,Zhao, Qian,Wang, Baosheng. 2014

[13]Identification of a major quantitative trait locus for ear size induced by space flight in sweet corn. Yu, Y. T.,Li, G. K.,Yang, Z. L.,Hu, J. G.,Zheng, J. R.,Qi, X. T.. 2014

[14]A screening method for detecting simple sequence repeat (SSR) polymorphism of Zea mays using high-resolution melting-curve analysis. Jiang, Y.,Tan, H.,Li, Y. D.,Yu, R. H.,Wang, S.,Li, X. H.,Shan, X. H.. 2011

[15]Differences in maize physiological characteristics, nitrogen accumulation, and yield under different cropping patterns and nitrogen levels. Zhang, Xiangqian,Huang, Guoqin,Zhao, Qiguo. 2014

[16]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[17]Development of SNP-based dCAPS markers linked to major head smut resistance quantitative trait locus qHS2.09 in maize. Di, Hong,Liu, Xianjun,Wang, Qiankun,Zhang, Lin,Wang, Zhenhua,Weng, Jianfeng,Li, Xinhai.

[18]Ustilago maydis reprograms cell proliferation in maize anthers. Gao, Li,Gao, Li,Kelliher, Timothy,Nguyen, Linda,Walbot, Virginia.

[19]Molecular Mapping of the Major Resistance Quantitative Trait Locus qHS2.09 with Simple Sequence Repeat and Single Nucleotide Polymorphism Markers in Maize. Weng, Jianfeng,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Zhang, Degui,Bai, Li,Liu, Changlin,Zhang, Shihuang,Li, Xinhai,Liu, Xianjun,Wang, Zhenhua,Zhang, Lin,Wang, Jianjun.

[20]Genome-wide identification of genes involved in raffinose metabolism in Maize. Zhou, Mei-Liang,Zhang, Qian,Zhou, Ming,Shao, Ji-Rong,Zhou, Mei-Liang,Sun, Zhan-Min,Tang, Yi-Xiong,Wu, Yan-Min,Zhu, Xue-Mei.

作者其他论文 更多>>