The Laccase Gene Family Mediate Multi-Perspective Trade-Offs during Tea Plant (Camellia sinensis) Development and Defense Processes
文献类型: 外文期刊
第一作者: Yu, Yongchen
作者: Yu, Yongchen;Xing, Yuxian;Zhang, Xin;Li, Xiwang;Zhang, Jin;Sun, Xiaoling;Yu, Yongchen;Xing, Yuxian;Zhang, Xin;Li, Xiwang;Zhang, Jin;Sun, Xiaoling;Liu, Fengjing
作者机构:
关键词: Camellia sinensis; laccase gene family; trade-off; development; induced defense; insect herbivore
期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:6.208; 五年影响因子:6.628 )
ISSN:
年卷期: 2021 年 22 卷 22 期
页码:
收录情况: SCI
摘要: Laccase (LAC) plays important roles in different plant development and defense processes. In this study, we identified laccase genes (CsLACs) in Camellia sinensis cv 'Longjing43 & PRIME; cultivars, which were classified into six subclades. The expression patterns of CsLACs displayed significant spatiotemporal variations across different tissues and developmental stages. Most members in subclades II, IV and subclade I exhibited contrasting expression patterns during leaf development, consistent with a trade-off model for preferential expression in the early and late developmental stages. The extensive transcriptional changes of CsLACs under different phytohormone and herbivore treatment were observed and compared, with the expression of most genes in subclades I, II and III being downregulated but genes in subclades IV, V and VI being upregulated, suggesting a growth and defense trade-off model between these subclades. Taken together, our research reveal that CsLACs mediate multi-perspective trade-offs during tea plant development and defense processes and are involved in herbivore resistance in tea plants. More in-depth research of CsLACs upstream regulation and downstream targets mediating herbivore defense should be conducted in the future.
分类号:
- 相关文献
作者其他论文 更多>>
-
A novel antifungal peptide, SP1.2, from Rhodopseudomonas palustris against the rice blast pathogen
作者:Wu, Xiyang;Qin, Yingfei;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong;Wu, Xiyang;Qin, Yingfei;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong;Wu, Xiyang;Qin, Yingfei;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong
关键词:SP1.2 peptide; antifungal activity; ROS burst; Magnaporthe oryzae; rice defense
-
Knockdown of the cap 'n ' collar isoform C gene increases the susceptibility of Agrotis ipsilon to chlorantraniliprole and phoxim
作者:Xiao, Qing-Hua;Zhang, Jin;Li, Mao -Ye;Liu, Su;Li, Wu -Ye;Yu, Jia-Min;Liu, Dong-Yang;Peng, Jiang -Nan
关键词:Black cutworm; CncC; RNA interference; Glutathione S -transferase; Insecticide detoxification
-
The new CFEM protein CgCsa required for Fe 3+homeostasis regulates the growth, development, and pathogenicity of Colletotrichum gloeosporioides
作者:Liu, Sizhen;Bu, Zhigang;Zhu, Yonghua;Liu, Sizhen;Zhang, Xin;Chen, Yue;Sun, Qianlong;Wu, Fei;Guo, Sheng;Tan, Xinqiu;Liu, Sizhen;Zhang, Xin;Chen, Yue;Sun, Qianlong;Wu, Fei;Guo, Sheng;Tan, Xinqiu;Tan, Xinqiu
关键词:Colletotrichum gloeosporioides; CgCsa; CFEM; Pathogenicity; Iron
-
Nitrification inhibitor 3,4-dimethylpyrazole phosphate alleviates the dissolution of soil inorganic carbon caused by nitrogen fertilization
作者:Zhao, Yi;Zhao, Yi;Meng, Fanqiao;Zhao, Yi;Bol, Roland;Xiao, Guangmin;Zhang, Xin;Tan, Yuechen;Bol, Roland
关键词:Soil inorganic carbon; Pedogenic carbonates; DMPP; Soil carbon stocks; delta C-13
-
Comprehensive Analysis of the DnaJ/HSP40 Gene Family in Maize (Zea mays L.) Reveals that ZmDnaJ96 Enhances Abiotic Stress Tolerance
作者:Cao, Liru;Wang, Guorui;Pang, Yunyun;Zhang, Qianjin;Zhang, Xin;Wang, Zhenghua;Lu, Xiaomin;Cao, Liru;Lu, Xiaomin;Fahim, Abbas Muhammad
关键词:DnaJ; HSP40; Gene resources; Evolution; Drought; Heat stress
-
Recent Progress Regarding Jasmonates in Tea Plants: Biosynthesis, Signaling, and Function in Stress Responses
作者:Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling;Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling
关键词:jasmonates; biosynthesis; tea plant; defense response; biotic stress; abiotic stress
-
A genome-wide association study to identify growth-related SNPs and genes in blotched snakehead (Channa maculata)
作者:Liu, Haiyang;Xia, Weiwei;Ou, Mi;Luo, Qing;Zhang, Xincheng;Fei, Shuzhan;Huang, Sujing;Zhao, Xunjin;Zhang, Jin;Cui, Tongxin;Chen, Kunci;Zhao, Jian;Xia, Weiwei;Huang, Sujing;Chen, Kunci;Zhao, Jian;Xiong, Bingyuan;Wu, Guohong
关键词:Channa maculata; Growth trait; Genome resequencing; SNP; GWAS; Candidate genes