Quantitative trait locus analysis of drought tolerance and yield in maize in China

文献类型: 外文期刊

第一作者: Xiao, YN

作者: Xiao, YN;Li, XH;George, ML;Li, MS;Zhang, SH;Zheng, YL

作者机构:

关键词: quantitative trait loci;water stress;yield and yield components;Zea mays L.;GRAIN-YIELD;NONSTRESS ENVIRONMENTS;TROPICAL MAIZE;MAPPING QTLS;COMPONENTS;IDENTIFICATION;STRESS;LEAF;GENERATIONS;PROTEIN

期刊名称:PLANT MOLECULAR BIOLOGY REPORTER ( 影响因子:1.595; 五年影响因子:2.042 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Drought accounts for significant yield losses in crops. Maize (Zea mays L.) is particularly sensitive to water stress at reproductive stages, and breeding to improve drought tolerance has been a challenge. By use of a linkage map with 121 single sequence repeat (SSR) markers, quantitative trait loci (QTLs) for grain yield and yield components were characterized in the population of the cross X178xB73 under water-stressed and well-watered conditions. Under the well-watered regime, 2, 4, 4, 1, 2, 2, and 3 QTLs were identified for grain yield, 100-kernel weight, kernel number per ear, cob weight per ear, kernel weight per ear, ear weight, and ear number per plant, respectively, whereas under the water-stressed conditions, 1, 5, 2, 6, 1, 3, and 2 QTLs, respectively, were found. The significant phenotypic correlations among yield and yield components to some extent were observed under both water conditions, and some overlaps between the corresponding QTLs were also found. QTLs for grain yield and kernel weight per ear under well-watered conditions and ear weight under both well-watered and water-stressed conditions over lapped, and all were located on chromosome 1.03 near marker bnlg 176. Two other noticeable QTL regions were on chromosome 9.05 and 9.07 near markers umc1657 and bnlg1525; the first corresponded to grain yield, kernel weight per ear, and ear weight under well-watered conditions and kernel number per ear under both water conditions, and the second to grain yield and cob weight per ear under water-stressed conditions and ear number per plant under both water conditions. A comparative analysis of the QTLs herein identified with those described in previous studies for yield and yield components in different maize populations revealed a number of QTLs in common. These QTLs have potential use in molecular marker-assisted selection.

分类号: Q946

  • 相关文献

[1]Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). Li, Hui-Yong,Wang, Tian-Yu,Shi, Yun-Su,Fu, Jun-Jie,Song, Yan-Chun,Wang, Guo-Ying,Li, Yu.

[2]Effects of nitrogen fertilization on chlorophyll fluorescence change in maize (Zea mays L.) under waterlogging at seedling stage. Wu, Wen-Ming,Li, Jin-Cai,Wei, Feng-Zhen,Wang, Chen-Yu,Wang, Yan-Hong,Wu, Jin-Dong,Zhang, Yi,Wu, Wen-Ming,Chen, Hong-Jian,Wang, Shi-Ji. 2013

[3]Proteomics analysis of major royal jelly protein changes under different storage conditions. Zhang, Zhao-hui,Pan, Ying-hong,Li, Jian-ke,Feng, Mao,Zhang, Lan.

[4]QTL mapping for resistance to SCMV in chinese maize germplasm. Zhang, SH,Li, XH,Wang, ZH,George, ML,Jeffers, D,Wang, FG,Liu, XD,Li, MS,Yuan, LX. 2003

[5]Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Xu, Bi Yu,Su, Wei,Liu, Ju Hua,Wang, Jia Bao,Jin, Zhi Qiang.

[6]Differential gene expression in whitefly (Bemisia tabaci) B-biotype females and males under heat-shock condition. Wan, Fang-Hao,Wan, Fang-Hao.

[7]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[8]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[9]Fusion expression of bovine lactoferricin in Escherichia coli. Feng, Xing-jun,Wang, Jian-hua,Shan, An-shan,Teng, Da,Yang, Ya-lin,Yao, Yi,Yang, Guan-pin,Shao, Yan-chun,Liu, Shuo,Zhang, Fan.

[10]Identification of proteins associated with cytoplasmic male sterility in pepper (Capsicum annuum L.). Zhang, X. F.,Chen, B.,Zhang, L. Y.,Zhang, L. L.,Chen, X. H.,Zhao, H.,Geng, S. S..

[11]Protective immune responses in guinea pigs and swine induced by a suicidal DNA vaccine of the capsid gene of swine vesicular disease virus. Sun, Shi-Qi,Liu, Xiang-Tao,Guo, Hui-Chen,Yin, Shuang-Hui,Shang, You-Jun,Feng, Xia,Liu, Zai-Xin,Xie, Cling-Ge.

[12]Characterization of DNA beta associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. Zhou, XP,Xie, Y,Tao, XR,Zhang, ZK,Li, ZH,Fauquet, CM.

[13]Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Li, ZK,Arif, M,Zhong, DB,Fu, BY,Xu, JL,Domingo-Rey, J,Ali, J,Vijayakumar, CHM,Yu, SB,Khush, GS.

[14]Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging. Zhang, Yanjun,Chen, Yizhen,Dong, Hezhong,Zhang, Yanjun,Chen, Yizhen,Lu, Hequan,Kong, Xiangqiang,Dai, Jianlong,Li, Zhenhuai,Dong, Hezhong.

[15]The effect of nitrogen addition on seed yield and yield components of Leymus chinensis in Songnen Plain, China. Chen, J. S.,Zhu, R. F.,Zhang, Y. X.. 2013

[16]YIELD AND YIELD COMPONENTS OF HYBRID RICE AS INFLUENCED BY NITROGEN FERTILIZATION AT DIFFERENT ECO-SITES. Li, Ganghua,Wang, Shaohua,Tang, She,Ding, Yanfeng,Li, Ganghua,Zhang, Jun,Yang, Chongdang,Song, Yunpan,Liu, Zhenghui,Wang, Shaohua,Yang, Chongdang,Zheng, Chengyan. 2014

[17]Developmental analysis on genetic behavior of brown rice recovery in indica rice across environments. Shi, CH,Wu, JG,Zhang, XM,Wu, P.

[18]Components of soil respiration and its monthly dynamics in rubber plantation ecosystems. Wu, Zhixiang,Xie, Guishui,Zhou, Zhaode,Wu, Zhixiang,Guan, Limin,Chen, Bangqian,Yang, Chuan,Lan, Guoyu,Xie, Guishui. 2013

[19]Modelling of seed yield and its components in tall fescue (Festuca arundinacea) based on a large sample. Wang, Quanzhen,Hu, Tianming,Cui, Jian,Wang, Xianguo,Zhou, He,Han, Jianguo,Zhang, Tiejun. 2011

[20]The Variation Tendency of Polyamines Forms and Components of Polyamine Metabolism in Zoysiagrass (Zoysia japonica Steud.) to Salt Stress with Exogenous Spermidine Application. Li, Shucheng,Cui, Linlin,Wang, Yunwen,Mao, Peisheng,Zhang, Yujuan. 2017

作者其他论文 更多>>