Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens

文献类型: 外文期刊

第一作者: Xu, XH

作者: Xu, XH;Zhou, B;Hu, F;Zhang, CX;Zhang, MX

作者机构:

关键词: Oryza saliva;Graminae;Rice;Allelopathy;Flavone and cyclohexenone;Identification;Allelochemicals;Seedlings;Germplasm;Extracts;Example;Growth;Plants;Straw.

期刊名称:PHYTOCHEMISTRY ( 影响因子:4.072; 五年影响因子:4.132 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A flavone (5,7,4'-trihydroxy-3,5'-dimethoxyflavone), a cyclohexenone (3-isopropyl-5-acetoxycyclohexene-2-one-1) and a liquid mixture of low polarity, containing long-chain and cyclic hydrocarbons, were isolated from leaves of allelopathic rice accession PI 312777 using column chromatography. Their structures and constituents were identified by means of HR-MS, NMR and GC/MS analyses, respectively. Bioassays showed that both the flavone and cyclohexenone significantly inhibited the growth of weeds Echinochloa crus-galli, Cyperus difformis and Cypertus iris, and the spore germination of fungal pathogens Pyricularia oryzae and Rhizoctonia solani at all tested concentrations. Moreover, the combination of the inactive mixture of low polarity and the active flavone or cyclohexenone significantly enhanced the inhibitory activities on weed growth. In addition, the two compounds and the mixture of low polarity from the leaves of PI312777 did not inhibit the rice growth at the same concentrations. It was also established that both compounds could be released into the soil, and was especially induced by E. crus-galli. The results suggest that 5,7,4'-trihydroxy-3',5'-dimethoxyflavone and 3-isopropyl- 5-acetoxycyclohexene-2-one-1 may act as allelochemicals participating in the defense of rice against weeds and pathogens

分类号: Q946

  • 相关文献

[1]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[2]Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. Jiang, Wenzhu,Chu, Sang-Ho,Piao, Rihua,Lee, Joohyun,Qiao, Yongli,Koh, Hee-Jong,Jiang, Wenzhu,Chu, Sang-Ho,Piao, Rihua,Lee, Joohyun,Qiao, Yongli,Koh, Hee-Jong,Chin, Joong-Hyoun,Jin, Yong-Mei,Jin, Yong-Mei,Han, Longzhi,Piao, Zongze.

[3]Relationship of DIMBOA content in wheat seedlings and its resistance to plant pathogens. Zhao, Y,Dong, FS,Yao, JR,Hurle, K.

[4]Allelopathic effects of Parthenium hysterophorus L. volatiles and its chemical components. Chen, Yebing,Wang, Jinxin,Wu, Xiaohu,Sun, Jian,Yang, Na,Chen, Yebing.

[5]Isolation and Identification of Potential Allelochemicals from Aerial Parts of Avena fatua L. and Their Allelopathic Effect on Wheat. Tian, Fajun,Tian, Yingying,Dong, Fengshou,Xu, Jun,Zheng, Yongquan,Tian, Fajun,Wu, Yanbing.

[6]A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats. Tang, Maoxue,Cheng, Wenke,Qian, Lili,Yang, Shulin,Cui, Wentao,Li, Kui,Tang, Maoxue,Cheng, Wenke,Qian, Lili,Yang, Shulin,Cui, Wentao,Li, Kui,Xie, Tingting,Yang, Daichang.

[7]Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Lu, Yanli,Xu, Jie,Yuan, Zhimin,Lan, Hai,Rong, Tingzhao,Lu, Yanli,Xu, Yunbi,Xu, Yunbi,Shah, Trushar.

[8]Allelopathic effects of Hulless barley (Hordeum vulgare L.) on rape (Brassica campestris L.). Li, W.,Shen, S.,Guo, Q. Y.,Li, W.,Shen, S.,Guo, Q. Y.,Li, W.,Shen, S.,Guo, Q. Y.,Li, W.,Shen, S.,Guo, Q. Y..

[9]Allelopathic effects of twelve hedgerow plant species on seed germination and seedling growth of wheat (Triticum astivum L). Cheng, Xu,Cai, Qingnian,Lin, Chaowen. 2012

[10]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[11]Quantitative determination of soybean meal content in compound feeds: comparison of near-infrared spectroscopy and real-time PCR. Li, Hui,Lv, Xiaowen,Wang, Jing,Li, Junguo,Yang, Haifeng,Qin, Yuchang.

[12]Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Zhang, Haiying,Wang, Hui,Guo, Shaogui,Ren, Yi,Gong, Guoyi,Xu, Yong,Weng, Yiqun.

[13]Differential growth response and carbohydrate metabolism of global collection of perennial ryegrass accessions to submergence and recovery following de-submergence. Yu, Xiaoqing,Jiang, Yiwei,Luo, Na,Yan, Jiapei,Tang, Jinchi,Liu, Shuwei. 2012

[14]Genetic variability for root hair traits as related to phosphorus status in soybean. Wang, LD,Liao, H,Yan, XL,Zhuang, BC,Dong, YS.

[15]Environmental effects on expression of apetalous flowers in oilseed rape. Jiang, L,Becker, HC.

[16]Allelopathy of rice (Oryza sativa L.) root exudates and its relations with Orobanche cumana Wallr. and Orobanche minor Sm. germination. Ma, Yongqing,Zhang, Meng,Li, Yaolin,Ma, Yongqing,Shui, Junfeng,Zhou, Yongjun. 2014

[17]Relationship Between Allelopathic Effects and Functional Traits of Different Allelopathic Potential Rice Accessions at Different Growth Stages. Xu Gaofeng,Shen Shicai,Zhang Fudou,Zhang Yun,Hisashi, Kato-Noguchi,David, Roy Clements. 2018

[18]Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Li, Xiaobai,Jia, Limeng,Wu, Dianxing,Li, Xiaobai,Agrama, Hesham,Jia, Limeng,Moldenhauer, Karen,Li, Xiaobai,Yan, Wengui,Jia, Limeng,Jackson, Aaron,McClung, Anna,Shen, Xihong,Yeater, Kathleen.

[19]Genetic analysis of genetic basis of a physiological disorder "straighthead" in rice (Oryza sativa L.). Li, Xiaobai,Jia, Limeng,Wu, Dianxing,Yan, Wengui,Jackson, Aaron,Jia, Melissa,Li, Xiaobai,Jia, Limeng,Agrama, Hesham,Moldenhauer, Karen,Correa, Fernando.

[20]The effect of low water content on seed longevity. Hu, CL,Zhang, YL,Tao, M,Hu, XR,Jiang, CY. 1998

作者其他论文 更多>>