Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat
文献类型: 外文期刊
第一作者: Huang, Wenjiang
作者: Huang, Wenjiang;Wang, Zhijie;Ma, Zhihong;Zhang, Jincheng;Wang, Jihua;Zhao, Chunjiang;Huang, Wenjiang;Huang, Wenjiang;Lamb, David W.;Wang, Zhijie;Huang, Linsheng
作者机构:
关键词: winter wheat.;Bi-directional reflectance difference function;Chlorophyll concentration;Vertical distribution;Canopy chlorophyll inversion index;Internet resource.
期刊名称:PRECISION AGRICULTURE ( 影响因子:5.385; 五年影响因子:5.004 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: An effective technique to measure foliage chlorophyll concentration (Chl) at a large scale and within a short time could be a powerful tool to determine fertilization amount for crop management. The objective of this study was to investigate the inversion of foliage Chl vertical-layer distribution by bi-directional reflectance difference function (BRDF) data, so as to provide a theoretical basis for monitoring the growth and development of winter wheat and for providing guidance on the application of fertilizer. Remote sensing could provide a powerful tool for large-area estimation of Chl. Because of the vertical distribution of leaves in a wheat stem, Chl vertical distribution characteristics show an obvious decreasing trend from the top of the canopy to the ground surface. The ratio of transformed chlorophyll absorption reflectance index (TCARI) to optimized soil adjusted vegetation index (OSAVI) was called the canopy chlorophyll inversion index (CCII) in this study. The value of CCII at nadir, pl20 and pl30p, at nadir, pl30 and pl40p, and at nadir, pl50 and pl60p view angles were selected and assembled as bottom-layer Chl inversion index (BLCI), middle-layer Chl inversion index (MLCI), and upper-layer Chl inversion index (ULCI), respectively, for the inversion of Chl at the vertical bottom layer, middle layer, and upper layer. The root mean squared error (RMSE) between BLCI-, MLCI-, and ULCI-derived and laboratory-measured Chl were 0.7841, 0.9426, and 1.7398, respectively. The vertical foliage Chl inversion could be used to monitor the crop growth status and to guide fertilizer and irrigation management. The results suggested that vegetation indices derived from bi-directional reflectance spectra (e.g., BLCI, ULCI, and MLCI) were satisfactory for inversion of the Chl vertical distribution.
分类号: S
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Enhancing potato leaf protein content, carbon-based constituents, and leaf area index monitoring using radiative transfer model and deep learning
作者:Feng, Haikuan;Fan, Yiguang;Ma, Yanpeng;Liu, Yang;Chen, Riqiang;Bian, Mingbo;Fan, Jiejie;Yang, Guijun;Zhao, Chunjiang;Feng, Haikuan;Zhao, Chunjiang;Yue, Jibo;Fu, Yuanyuan;Leng, Mengdie;Jin, Xiuliang;Zhao, Yu
关键词:Potato; Deep learning; Radiative transfer model; Transfer learning; Leaf protein content
-
Transcriptomic Profiling of Heat-Treated Oriental Lily Reveals LhERF109 as a Positive Regulator of Anthocyanin Accumulation
作者:Zhou, Mei;Zeng, Lijia;Zhu, Jungang;Yong, Xue;Wu, Mengxi;Jiang, Beibei;Jia, Yin;Li, Fan;Jin, Chunlian;Wang, Jihua;Li, Fan;Jin, Chunlian;Yuan, Huijuan;Wang, Jihua;Yuan, Huijuan;Pan, Yuanzhi
关键词:oriental lily; heat stress; transcriptome; anthocyanin biosynthesis; WGCNA;
LhERF109 -
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding