Differentially Expressed Genes Distributed Over Chromosomes and Implicated in Certain Biological Processes for Site Insertion Genetically Modified Rice Kemingdao

文献类型: 外文期刊

第一作者: Li, Yunhe

作者: Li, Yunhe;Zhao, Jie;Chen, Xiuping;Jian, Guiliang;Peng, Yufa;Qi, Fangjun

作者机构:

关键词: GM KMD rice;comparative transcriptome analysis;differentially expressed genes;changed pathways;unintended effects;changes in amino acid synthesis.

期刊名称:INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES ( 影响因子:6.58; 五年影响因子:6.478 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Release of genetically modified (GM) plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD) rice transformed with a synthetic crylAb gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushuil I (XSII). The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XSII; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis.

分类号: Q

  • 相关文献

[1]Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. Yang, Qiao-Song,Gao, Jie,He, Wei-Di,Dou, Tong-Xin,Ding, Li-Jie,Wu, Jun-Hua,Li, Chun-Yu,Yi, Gan-Jun,Yang, Qiao-Song,Gao, Jie,He, Wei-Di,Dou, Tong-Xin,Ding, Li-Jie,Wu, Jun-Hua,Li, Chun-Yu,Yi, Gan-Jun,Gao, Jie,Dou, Tong-Xin,Ding, Li-Jie,Wu, Jun-Hua,Peng, Xin-Xiang,He, Wei-Di,Zhang, Sheng. 2015

[2]RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Li, Xinhai,Ma, Youzhi,Zhang, Hui. 2017

[3]Detection of unintended effects in genetically modified herbicide-tolerant (GMHT) rice in comparison with non-target phenotypic characteristics. Xiao, Guoying,Jiang, Xianbin,Jiang, Xianbin. 2010

[4]Transcriptomic Identification of Drought-Related Genes and SSR Markers in Sudan Grass Based on RNA-Seq. Wang, Xia,Huang, Linkai,Zhang, Xinquan,Li, Zhou,Yan, Haidong,Zhu, Yongqun,Lin, Chaowen,Xu, Wenzhi,Luo, Fuxiang,Wang, Xie,Yao, Li,Peng, Dandan,Peng, Jianhua. 2017

[5]De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.). Kaijie Xu,Fengli Sun,Guaiqiang Chai,Yongfeng Wang,Lili Shi,Shudong Liu,Yajun Xi. 2015

[6]A comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium hirsutum x Gossypium barbadense population. Wu Man,Liyuan Zhang,Xihua Li,Xiaobing Xie,Wenfeng Pei,Jiwen Yu,Shuxun Yu,Jinfa Zhang. 2016

[7]Gene expression profiling in shoot apical meristem of Gossypium hirsutum. M. Wu,J. Li,S. L. Fan,M. Z. Song,C. Y. Pang,J. H. Wei,J. W. Yu,J. F. Zhang,S. X. Yu. 2015

[8]Microarray analysis of differentially expressed genes engaged in fruit development between Prunus mume and Prunus armeniaca. Li, Xiaoying,Korir, Nicholas Kibet,Shangguan, Lingfei,Han, Jian,Fang, Jinggui,Wang, Yuzhu,Liu, Lili,Chen, Ming. 2012

[9]Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum. Pan, Ling,Zhang, Xinquan,Ma, Xiao,Huang, LinKai,Nie, Gang,Wang, Pengxi,Yang, Zhongfu,Li, Ji,Wang, Jianping,Zhou, Meiliang. 2016

[10]Isolation and analysis of differentially expressed genes from peanut in response to challenge with Ralstonia solanacearum. Ding, Yu Fei,Wang, Chuan Tang,Tang, Yue Yi,Wang, Xiu Zhen,Wu, Qi,Yu, Hong Tao,Zhang, Jian Cheng,Cui, Feng Gao,Song, Guo Sheng,Yu, Shan Lin,Hu, Dong Qing,Gao, Hua Yuan. 2012

[11]Identification of differentially expressed genes using digital gene expression profiles in Pyrus pyrifolia Nakai cv. Hosui bud release following early defoliation. Tao, Shu-tian,Li, Meng,Qi, Xiao-xiao,Wu, Jun,Yin, Hao,Zhang, Shao-ling,Zhang, Quan-jun,Deng, Jia-lin. 2015

[12]RNA-seq analysis reveals a key role of brassinolide-regulated pathways in NaCl-stressed cotton. Shu, H. M.,Guo, S. Q.,Gong, Y. Y.,Jiang, L.,Zhu, J. W.,Ni, W. C.. 2017

[13]Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Coelomocytes of Sea Cucumber (Apostichopus japonicus) after Vibrio splendidus Challenge. Gao, Qiong,Gao, Qiong,Liao, Meijie,Wang, Yingeng,Li, Bin,Zhang, Zheng,Rong, Xiaojun,Chen, Guiping,Wang, Lan. 2015

[14]GADD45 beta, an anti-tumor gene, inhibits avian leukosis virus subgroup J replication in chickens. Zhang, Xinheng,Yan, Zhuanqiang,Li, Xinjian,Lin, Wencheng,Dai, Zhenkai,Yan, Yiming,Lu, Piaopiao,Chen, Weiguo,Chen, Feng,Ma, Jingyun,Xie, Qingmei,Zhang, Xinheng,Yan, Zhuanqiang,Li, Xinjian,Lin, Wencheng,Dai, Zhenkai,Yan, Yiming,Lu, Piaopiao,Chen, Weiguo,Chen, Feng,Ma, Jingyun,Xie, Qingmei,Zhang, Xinheng,Yan, Zhuanqiang,Li, Xinjian,Lin, Wencheng,Dai, Zhenkai,Yan, Yiming,Lu, Piaopiao,Chen, Weiguo,Chen, Feng,Ma, Jingyun,Xie, Qingmei,Zhang, Xinheng,Li, Xinjian,Lin, Wencheng,Dai, Zhenkai,Yan, Yiming,Lu, Piaopiao,Chen, Weiguo,Chen, Feng,Ma, Jingyun,Xie, Qingmei,Lin, Wencheng,Chen, Weiguo,Chen, Feng,Xie, Qingmei,Zhang, Huanmin. 2016

[15]Screening critical genes associated with malignant glioma using bioinformatics analysis. Xu, Yonggang,Xu, Yanbin,Xiao, Hong,Li, Jianhua,Wang, Zhi,Wang, Jie. 2017

[16]Comparative transcriptomics reveals genes involved in metabolic and immune pathways in the digestive gland of scallop Chlamys farreri following cadmium exposure. Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling,Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling,Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling. 2017

[17]Discovery of genes associated with cadmium accumulation from gill of scallop Chlamys farreri based on high-throughput sequencing. Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling,Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling,Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling.

[18]Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.). Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui,Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui. 2016

[19]Transcriptional Differences in Embryonic Fibroblasts Between Beijing Fatty Chicken and Silkie Bantam Using Microarray. WenboLi,WeijunGuan,Ma, Yue Hui,WenboLi,SijiuYu,Zhang, Jiyang,Li, Mansheng.

[20]RNA-Seq analysis of immune-relevant genes in Lateolabrax japonicus during Vibrio anguillarum infection. Zhao, Chao,Fu, Mingjun,Wang, Chengyang,Qiu, Lihua,Wang, Chengyang,Zhao, Chao,Fu, Mingjun,Wang, Chengyang,Qiu, Lihua,Qiu, Lihua,Jiao, Zongyao.

作者其他论文 更多>>