Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state

文献类型: 外文期刊

第一作者: Liu, Yanfang

作者: Liu, Yanfang;Zhang, Cuixian;Chen, Juan;Guo, Lihong;Li, Xiaolu;Li, Wenpeng;Yu, Zefen;Deng, Jingshi;Zhang, Pengyuan;Zhang, Keqin;Zhang, Lemin;Liu, Yanfang;Zhang, Cuixian;Chen, Juan;Guo, Lihong;Li, Xiaolu;Li, Wenpeng;Yu, Zefen;Deng, Jingshi;Zhang, Pengyuan;Zhang, Keqin;Zhang, Lemin;Liu, Yanfang;Guo, Lihong

作者机构:

关键词: Arabidopsis thaliana;Heat shock element;Heat shock factor;Redox state;Stress sensing

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Arabidopsis heat shock factor HsfA1a is present in a latent, monomeric state under normal conditions; its activation involves heat stress-induced trimerization, binding to heat shock element in target promoters, and the acquisition of transcriptional competence. HsfA1a is an important regulator for heat stress-induced gene expression and thermotolerance. However, it is not clear whether HsfA1a is directly activated by stress and the mechanisms of the stress signaling are poorly understood. We analyzed HsfA1a activation by trimerization and DNA-binding assays in vitro and in vivo in response to heat stress, low/high pH, and hydrogen peroxide treatments. Our results show that purified recombinant HsfA1a was activated by these stress treatments in vitro. The same treatments also induced the binding to HSP18.2 and HSP70 promoters as examined by chromatin immunoprecipitation, and the HsfA1a DNA binding paralleled the mRNA expression of its target genes induced by different stresses. Stress-induced DNA-binding could be reversed, both in vitro and in vivo, by subsequent incubation with reducing agents (DTT, NADPH). These data suggest that HsfA1a can directly sense stress and become activated, and this process is dependent on the redox state. An N-terminal deletion of the amino acid residues from 48 to 74 negatively affected pH- and hydrogen peroxide-, but not heat-stress sensing.

分类号: Q945

  • 相关文献

[1]Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression. Qian, J.,Chen, J.,Liu, Y. F.,Yang, L. L.,Li, W. P.,Zhang, L. M.,Qian, J.,Chen, J.,Liu, Y. F.,Yang, L. L.,Li, W. P.,Zhang, L. M.,Liu, Y. F.. 2014

[2]Switch on a more efficient pyruvate synthesis pathway based on transcriptome analysis and metabolic evolution. Yang, Maohua,Mu, Tingzhen,Xing, Jianmin,Chen, Ruonan,Zhang, Xiang. 2017

[3]Apoptotic effects of hydrogen peroxide and vitamin C on chicken embryonic fibroblasts: redox state and programmed cell death. Jin, D. P.,Zhang, W. X.,Li, C. L.,Guan, W. J.,Ma, Y. H.,Jin, D. P.,Yang, H. J.,Li, C. Y..

[4]Ethylene inhibited aflatoxin biosynthesis is due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavus. Liao, B. -S.. 2009

[5]Autopolyploidy leads to rapid genomic changes in Arabidopsis thaliana. Liu, Shihong,Tian, Baoming,Wei, Fang.

[6]Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering. Song, Mei-Fang,Shang, Hong-Zhong,Gu, Hai-Ke,Song, Mei-Fang,Zhang, Shu,Li, Jing-Juan,Gao, Jian-Wei,Song, Mei-Fang,Hou, Pei,Guo, Lin,Su, Liang,Yang, Jian-Ping,Xiao, Yang.

[7]A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2. Xu, Jianwen,Chen, Yihan,Qian, Luofeng,Mu, Rong,Yuan, Xi,Fang, Huimin,Huang, Xi,Xu, Enshun,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen,Chen, Yihan,Qian, Luofeng,Mu, Rong,Yuan, Xi,Fang, Huimin,Huang, Xi,Xu, Enshun,Zhang, Hongsheng,Huang, Ji. 2017

[8]Characterization of a thermostable beta-glucuronidase from Thermotoga maritima expressed in Arabidopsis thaliana. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Zhu, Bo,Gao, Jian-Jie,Yao, Quan-Hong. 2012

[9]Functional analysis of BT4 of Arabidopsis thaliana in resistance against Botrytis cinerea. Hao, Cong-Cong,Jia, Jiao,Xing, Ji-Hong,Wang, Feng-Ru,Dong, Jin-Gao,Han, Jian-Min,Jia, Jiao,Chen, Zhan,Weng, Qiao-Yun. 2013

[10]Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2) Is Involved in ABA-Mediated Early Seedling Development. Yan, Jinping,He, Han,Tong, Shibo,Zhang, Wanrong,Wang, Jianmei,Li, Xufeng,Yang, Yi,Yan, Jinping. 2009

[11]Effects of gibberellin mutations on in vitro shoot bud regeneration of Arabidopsis. Zhang, Xiuhai,Wu, Zhongyi,Huang, Conglin. 2008

[12]Proteomics Dissection of Cold Responsive Proteins Based on PEG Fractionation in Arabidopsis. Wang Shang,Xi Jinghui,Li Shanyu,Liu Xiangguo,Hao Dongyun. 2014

[13]Abiotic Stresses and Phytohormones Regulate Expression of FAD2 Gene in Arabidopsis thaliana. Yuan Si-wei,Wu Xue-long,Liu Zhi-hong,Huang Rui-zhi,Yuan Si-wei,Luo Hong-bing. 2012

[14]NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. Gao, Huiling,Xie, Wenxiang,Yang, Changhong,Xu, Jingyi,Huang, Chao-Feng,Gao, Huiling,Xie, Wenxiang,Yang, Changhong,Xu, Jingyi,Huang, Chao-Feng,Gao, Huiling,Xie, Wenxiang,Yang, Changhong,Xu, Jingyi,Huang, Chao-Feng,Li, Jingjun,Chen, Xi,Wang, Hua. 2018

[15]Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. Feng, Dong Xin,Tasset, Celine,Hanemian, Mathieu,Barlet, Xavier,Tremousaygue, Dominique,Deslandes, Laurent,Marco, Yves,Feng, Dong Xin,Tasset, Celine,Hanemian, Mathieu,Barlet, Xavier,Tremousaygue, Dominique,Deslandes, Laurent,Marco, Yves,Feng, Dong Xin,Hu, Jian. 2012

[16]A comparative proteomics approach to detect unintended effects in transgenic Arabidopsis. Wang, Hua,Li, Linchuan,Qu, Li-Jia,Lv, Jun,Peng, Yufa. 2009

[17]The E-Subgroup Pentatricopeptide Repeat Protein Family in Arabidopsis thaliana and Confirmation of the Responsiveness PPR96 to Abiotic Stresses. Liu, Jia-Ming,Zhao, Juan-Ying,Guo, Chang-Hong,Liu, Jia-Ming,Zhao, Juan-Ying,Lu, Pan-Pan,Chen, Ming,Xu, Zhao-Shi,Ma, You-Zhi. 2016

[18]iTRAQ Mitoproteome Analysis Reveals Mechanisms of Programmed Cell Death in Arabidopsis thaliana Induced by Ochratoxin A. Xu, Wentao,Luo, Yunbo,Huang, Kunlun,Wang, Yan,Wang, Yan,Peng, Xiaoli,Yang, Zhuojun,Zhao, Weiwei,Xu, Wentao,Hao, Junran,Wu, Weihong,Shen, Xiao Li,Luo, Yunbo,Huang, Kunlun,Peng, Xiaoli,Shen, Xiao Li. 2017

[19]Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana. Mao, Jingjing,Manik, S. M. Nuruzzaman,Shi, Sujuan,Chao, Jiangtao,Wang, Qian,Liu, Haobao,Shi, Sujuan,Jin, Yirong. 2016

[20]Structural and biochemical insights into nucleotide-rhamnose synthase/epimerase-reductase from Arabidopsis thaliana. Han, Xiaodong,Qian, Lei,Liu, Xinqi,Qian, Lei,Han, Xiaodong,Zhang, Lianwen,Zhang, Lianwen. 2015

作者其他论文 更多>>