Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea

文献类型: 外文期刊

第一作者: Wu, Qiong

作者: Wu, Qiong;Li, Yingying;Li, Yaqian;Fu, Kehe;Yu, Chuanjin;Chen, Jie;Bai, Linquan;Liu, Weicheng;Lu, Caige

作者机构:

关键词: Botrytis cinerea;chit42 from Trichoderma harzianum P1;chitinase activity;natamycin production;Streptomyces lydicus A01

期刊名称:JOURNAL OF MICROBIOLOGY ( 影响因子:3.422; 五年影响因子:3.28 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Streptomyces lydicus A01 and Trichoderma harzianum P1 are potential biocontrol agents of fungal diseases in plants. S. lydicus A01 produces natamycin to bind the ergosterol of the fungal cell membrane and inhibits the growth of Botrytis cinerea. T. harzianum P1, on the other hand, features high chitinase activity and decomposes the chitin in the cell wall of B. cinerea. To obtain the synergistic biocontrol effects of chitinase and natamycin on Botrytis cinerea, this study transformed the chit42 gene from T. harzianum P1 to S. lydicus A01. The conjugal transformant (CT) of S. lydicus A01 with the chit42 gene was detected using polymerase chain reaction (PCR). Associated chitinase activity and natamycin production were examined using the 3, 5-dinitrosalicylic acid (DNS) method and ultraviolet spectrophotometry, respectively. The S. lydicus A01-chit42 CT showed substantially higher chitinase activity and natamycin production than its wild type strain (WT). Consequently, the biocontrol effects of S. lydicus A01-chit42 CT on B. cinerea, including inhibition to spore germination and mycelial growth, were highly improved compared with those of the WT. Our research indicates that the biocontrol effect of Streptomyces can be highly improved by transforming the exogenous resistance gene, i. e. chit42 from Trichoderma, which not only enhances the production of antibiotics, but also provides a supplementary function by degrading the cell walls of the pathogens.

分类号: Q93

  • 相关文献

[1]Construction of Streptomyces lydicus A01 transformant with the chit33 gene from Trichoderma harzianum CECT2413 and its biocontrol effect on Fusaria. Wu Qiong,Li YingYing,Li YaQian,Lin ZhenYa,Wang Meng,Chen Jie,Bai LinQuan,Liu WeiCheng,Lu CaiGe,Xue ChunSheng. 2013

[2]Efficient transformation and expression of the glucanase gene from Bacillus megaterium in the biocontrol strain Streptomyces lydicus A02. Wu, Huiling,Dong, Dan,Li, Jinjin,Liu, Weicheng,Liu, Ting,Zhang, Taotao,Tian, Zhaofeng. 2014

[3]Fusarium graminearum growth inhibition due to glucose starvation caused by osthol. Shi, Zhiqi,Shen, Shouguo,Zhou, Wei,Wang, Fei,Fan, Yongjian. 2008

[4]Racemic, R-, and S-tebuconazole altered chitinase and chitobiase activity of Daphnia magna. Qi, Suzhen,Liu, Xue,Zhu, Lizhen,Chen, Xiaofeng,Wang, Chengju,Qi, Suzhen. 2018

[5]Diversity and biocontrol potential of endophytic fungi in Brassica napus. Zhang, Jing,Yang, Long,Jiang, Daohong,Li, Guoqing,Zhang, Qinghua,Zhang, Jing,Yang, Long,Jiang, Daohong,Li, Guoqing,Zhang, Lei,Chen, Weidong. 2014

[6]Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. Qin, Guozheng,Zong, Yuanyuan,Tian, Shiping,Zong, Yuanyuan,Chen, Qiling,Hua, Donglai. 2010

[7]Functional analysis of BT4 of Arabidopsis thaliana in resistance against Botrytis cinerea. Hao, Cong-Cong,Jia, Jiao,Xing, Ji-Hong,Wang, Feng-Ru,Dong, Jin-Gao,Han, Jian-Min,Jia, Jiao,Chen, Zhan,Weng, Qiao-Yun. 2013

[8]Description of Bursaphelenchus taphrorychi sp n. (Nematoda: Parasitaphelenchidae), the second Bursaphelenchus species from larval galleries of the beech bark beetle, Taphrorychus bicolor (Herbst.) (Coleoptera: Curculionidae: Scolytinae), in European beech, Fagus sylvatica L.. Tomalak, Marek,Malewski, Tadeusz,Gu, Jianfeng,Fa-Qiang, Zhan. 2017

[9]Identification of Development and Pathogenicity Related Gene in Botrytis cinerea via Digital Gene Expression Profile. Zhao, Bin,Si, He Long,Sun, Zhi Ying,Xu, Zheng,Zhang, Jin Lin,Xing, Ji Hong,Dong, Jin Gao,Chen, Zhan. 2015

[10]Identification and evaluation of Aspergillus tubingensis as a potential biocontrol agent against grey mould on tomato. Zhao, Juan,Liu, Weicheng,Liu, Dewen,Lu, Caige,Zhang, Dianpeng,Wu, Huiling,Dong, Dan,Meng, Lingling. 2018

[11]The effect of MeJA on ethylene biosynthesis and induced disease resistance to Botrytis cinerea in tomato. Yu, Mengmeng,Shen, Lin,Zhao, Danying,Zheng, Yang,Sheng, Jiping,Fan, Bei.

[12]First report of grey mould on water dropwort (Oenanthe javanica DC.) caused by Botrytis cinerea. Song, Jia-Wei,Shi, Yan-Xia,Xie, Xue-Wen,Chai, A-Li,Li, Bao-Ju.

[13]Defense responses in tomato fruit induced by oligandrin against Botrytis cinerea. Wang, Ai-ying,Lou, Bing-gan,Xu, Tong,Lin, Chai,Wang, Ai-ying. 2011

[14]A Single-Nucleotide Deletion in the Transcription Factor Gene bcsmr1 Causes Sclerotial-Melanogenesis Deficiency in Botrytis cinerea. Zhou, Yingjun,Yang, Long,Wu, Mingde,Li, Guoqing,Zhang, Jing,Zhou, Yingjun,Yang, Long,Wu, Mingde,Li, Guoqing,Zhang, Jing,Zhou, Yingjun,Chen, Weidong. 2017

[15]EARLY DETECTION OF GREY MOULD DEVELOPMENT IN 'RED GLOBE' GRAPES DURING STORAGE. Guan, Wenqiang,Wu, Xinling,Guan, Wenqiang,Wang, Zhidong,Wang, Xiaotuo,Yan, Ruixiang. 2015

[16]Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15. Cheng, Y.,Liu, Y.,Liu, B. H.,Zhang, K. C..

[17]A new disease of mung bean caused by Botrytis cinerea. Li, Yinping,Sun, Suli,Xu, Chunbiao,Duan, Canxin,Zhu, Zhendong,Du, Chengzhang,Zhang, Jijun.

[18]BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element. Gao, Ying,Jia, Shuangwei,Wang, Chunlian,Wang, Fujun,Wang, Fajun,Zhao, Kaijun.

[19]Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Zhang, Shuai,Li, Xin,Sun, Zenghui,Shao, Shujun,Zhou, Yanhong,Xia, Xiaojian,Yu, Jingquan,Shi, Kai,Li, Xin,Yu, Jingquan,Hu, Lingfei,Ye, Meng.

[20]Interkingdom Gene Transfer May Contribute to the Evolution of Phytopathogenicity in Botrytis Cinerea. Zhu, Bo,Zhou, Qing,Xie, Guanlin,Zhang, Guoqing,Li, Bin,Jin, Gulei,Zhu, Bo,Zhou, Qing,Xie, Guanlin,Zhang, Guoqing,Li, Bin,Jin, Gulei,Zhang, Xiaowei,Wang, Yanli,Sun, Gunchang,Jin, Gulei. 2012

作者其他论文 更多>>