Selection of endogenous reference genes for gene expression analysis in the mediterranean species of the Bemisia tabaci (Hemiptera: Aleyrodidae) complex

文献类型: 外文期刊

第一作者: Su, Yun-Lin

作者: Su, Yun-Lin;He, Wen-Bo;Liu, Shu-Sheng;Wang, Xiao-Wei;Wang, Jia;Li, Jun-Min

作者机构:

关键词: Bemisia tabaci;Endogenous reference gene;Gene expression;Quantitative PCR;RNA-seq

期刊名称:JOURNAL OF ECONOMIC ENTOMOLOGY ( 影响因子:2.381; 五年影响因子:2.568 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Quantitative real-time reverse transcription polymerase chain reaction is widely used for gene expression analysis, and robust normalization against stably expressed endogenous reference genes (ERGs) is necessary to obtain accurate results. In this study, the stability of nine housekeeping genes of the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean were evaluated in various conditions by quantitative real-time reverse transcription polymerase chain reaction using geNorm and Normfinder programs. Both programs suggested α-tubulin/ubiquitin and 18S small subunit ribosomal RNA the most stable genes for bacterium- and insecticide-treated whiteflies, respectively. For developmental stages, organs, and the samples including salivary glands and the whole body, transcription initiation factor TFIID subunit was calculated as the most stably expressed gene by both programs. In addition, we compared the RNA-seq data with the results of geNorm and Normfinder and found that the stable genes revealed by RNA-seq analysis were also the ERGs recommended by geNorm and Normfinder. Furthermore, the use of the most stable gene suggested by RNA-seq analysis as an ERG produced similar gene expression patterns compared with results generated from the normalization against the most stable gene selected by geNorm and Normfinder and multiple genes recommended by geNorm. It indicates that RNA-seq data are reliable and provide a great source for ERG candidate exploration. Our results benefit future research on gene expression profiles of whiteflies and possibly other organisms.

分类号: Q969.9

  • 相关文献

[1]Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. Ding, JY,Jia, JW,Yang, LT,Wen, HB,Zhang, CM,Liu, WX,Zhang, DB. 2004

[2]Cloning and expression of heat shock protein genes in two whitefly species in response to thermal stress. Wan, F. -H.,Yu, H.,Wan, F. -H..

[3]Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.). Zhang, Chunsha,Zhang, Hongwei,Liang, Yi,Zhan, Zongxiang,Liu, Bingjiang,Chen, Zhentai. 2016

[4]De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissue. Wu, Shuanghua,Lei, Jianjun,Chen, Guoju,Cao, Bihao,Chen, Changming,Chen, Hancai. 2017

[5]Gene expression changes leading extreme alkaline tolerance in Amur ide (Leuciscus waleckii) inhabiting soda lake. Xu, Jian,Li, Qiang,Xu, Liming,Jiang, Yanliang,Zhao, Zixia,Zhang, Yan,Li, Jiongtang,Dong, Chuanju,Xu, Peng,Sun, Xiaowen,Wang, Shaolin,Dong, Chuanju. 2013

[6]Global gene expression responses to waterlogging in roots of sesame (Sesamum indicum L.). Wang, Linhai,Zhang, Yanxin,Qi, Xiaoqiong,Li, Donghua,Wei, Wenliang,Zhang, Xiurong. 2012

[7]Systemic analysis of gene expression profiles in porcine granulosa cells during aging. Li Hui,Guo Shuangshuang,Yu Jianning,Shi Zhendan. 2017

[8]DE NOVO TRANSCRIPTOME ANALYSIS OF MULBERRY (MORUS L.) UNDER DROUGHT STRESS USING RNA-SEQ TECHNOLOGY. Wang, Heng,Tong, Wei,Feng, Li,Jiao, Qian,Long, Li,Fang, Rongjun,Zhao, Weiguo,Long, Li,Zhao, Weiguo,Fang, Rongjun,Zhao, Weiguo.

[9]Development of a 44 K custom oligo microarray using 454 pyrosequencing data for large-scale gene expression analysis of Camellia sinensis. Wang, Lu,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Zhou, Yanhua,Yang, Yajun,Wang, Lu,Wang, Xinchao,Zhou, Yanhua,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Yang, Yajun.

[10]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[11]Comparative Transcriptome Analysis Reveals Differential Transcription in Heat-susceptible and Heat-tolerant Pepper (Capsicum annum L.) Cultivars under Heat Stress. Li, Tao,Xu, Xiaowan,Li, Ying,Wang, Hengming,Li, Zhiliang,Li, Zhenxing,Li, Tao,Xu, Xiaowan.

[12]RNA-seq based gene expression analysis of ovarian granulosa cells exposed to zearalenone in vitro: significance to steroidogenesis. Zhang, Guo-Liang,Zhang, Rui-Qian,Sun, Xiao-Feng,Cheng, Shun-Feng,Wang, Yu-Feng,Ge, Wei,Zhao, Yong,Shen, Wei,Li, Lan,Zhang, Guo-Liang,Ji, Chuan-Liang,Yu, Jie,Zhang, Guo-Liang,Sun, Shi-Duo,Feng, Yan-Zhong. 2017

[13]Transciptomic and histological analysis of hepatopancreas, muscle and gill tissues of oriental river prawn (Macrobrachium nipponense) in response to chronic hypoxia. Sun, Shengming,Fu, Hongtuo,Zhu, Jian,Ge, Xianping,Xuan, Fujun,Gu, Zhimin. 2015

[14]Transcriptome comparison in the pituitary-adrenal axis between Beagle and Chinese Field dogs after chronic stress exposure. Luo, Wei,Xu, Haiping,Nie, Qinghua,Luo, Wei,Xu, Haiping,Nie, Qinghua,Luo, Wei,Xu, Haiping,Nie, Qinghua,Fang, Meixia,Xing, Huijie.

[15]De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress. Zeng, Tao,Zhang, Liping,Li, Jinjun,Wang, Deqian,Tian, Yong,Lu, Lizhi,Zhang, Liping.

[16]Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content. Yan, Ning,Zhang, Hongbo,Zhang, Zhongfeng,Du, Yongmei,Liu, Xinmin,Liu, Yanhua,Shi, John,Timko, Michael P..

[17]Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Yang, LT,Chen, JX,Huang, C,Liu, YH,Jia, SR,Pan, LW,Zhang, DB. 2005

[18]Comparison of Five Endogenous Reference Genes for Specific PCR Detection and Quantification of Brassica napus. Wu, Gang,Zhang, Li,Wu, Yuhua,Cao, Yinglong,Lu, Changming.

[19]Collaborative Ring Trial of the Papaya Endogenous Reference Gene and Its Polymerase Chain Reaction Assays for Genetically Modified Organism Analysis. Wei, Jiaojun,Guo, Jinchao,Zhang, Dabing,Yang, Litao,Li, Feiwu,Li, Xiang,Xu, Junfeng,Wu, Gang.

[20]In-depth analysis of the endogenous reference genes used in the quantitative PCR detection systems for rice. Zhang, Li,Cao, Yinglong,Wu, Gang,Wu, Yuhua,Lu, Changming,Liu, Xin. 2012

作者其他论文 更多>>