MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice

文献类型: 外文期刊

第一作者: Zhao, Feng Yun

作者: Zhao, Feng Yun;Hu, Fan;Wang, Kai;Zhang, Cheng Ren;Liu, Tao;Zhang, Shi Yong

作者机构:

关键词: Auxin signal;Cadmium stress;Cell cycle;MAPK;Rice root system

期刊名称:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH ( 影响因子:4.223; 五年影响因子:4.306 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: This work aims to analyze the relationship between root growth, mitogen-activated protein kinase (MAPK), auxin signaling, and cell cycle-related gene expression in cadmium (Cd)-stressed rice. The role of MAPKs in auxin signal modification and cell cycle-related gene expression during root growth was investigated by disrupting MAPK signaling using the MAPKK inhibitor PD98059 (PD). Treatment with Cd caused a significant accumulation of Cd in the roots. A Cd-specific probe showed that Cd is mainly localized in the meristematic zone and vascular tissues. Perturbation of MAPK signaling using PD significantly suppressed root system growth under Cd stress. The transcription of six MAPK genes was inhibited by Cd compared to the control. Detection using DR5-GUS transgenic rice showed that the intensity and distribution pattern of GUS staining was similar in roots treated with PD or Cd, whereas in Cd plus PD-treated roots, the GUS staining pattern was similar to that of the control, which indicates a close association of MAPK signaling with auxin homeostasis under control and Cd stress conditions. The expression of most key genes of auxin signaling, including OsYUCCA, OsPIN, OsARF, and OsIAA, and of most cell cycle-related genes, was negatively regulated by MAPKs under Cd stress. These results suggest that the MAPK pathway plays specific roles in auxin signal transduction and in the control of the cell cycle in response to Cd stress. Altogether, MAPKs take part in the regulation of root growth via auxin signal variation and the modified expression of cell cycle-related genes in Cd-stressed rice. A working model for the function of MAPKs in rice root systems grown under Cd stress is proposed.

分类号: X5

  • 相关文献

[1]Hydrogen Peroxide-Mediated Growth of the Root System Occurs via Auxin Signaling Modification and Variations in the Expression of Cell-Cycle Genes in Rice Seedlings Exposed to Cadmium Stress. Zhao, Feng-Yun,Han, Ming-Ming,Wang, Kai,Zhang, Cheng-Ren,Liu, Tao,Liu, Wen,Zhang, Shi-Yong. 2012

[2]Crosstalk between ABA, auxin, MAPK signaling, and the cell cycle in cadmium-stressed rice seedlings. Zhao, Feng Yun,Wang, Kai,Ren, Jing,Liu, Tao,Wang, Xue,Zhang, Shi Yong.

[3]ABA plays essential roles in regulating root growth by interacting with auxin and MAPK signaling pathways and cell-cycle machinery in rice seedlings. Zhao, Feng Yun,Cai, Feng Xiang,Gao, Hua Jian,Wang, Kai,Liu, Tao,Wang, Xue,Zhang, Shi Yong.

[4]Effects of Cadmium Stress on Alternative Oxidase and Photosystem II in Three Wheat Cultivars. Xu, Fei,Zhang, Zhong-Wei,Chen, Yang-Er,Wang, Xiao,Shang, Jing,Lin, Hong-Hui,Duan, Yong-Ping,Tu, Shi-Hua,Feng, Wen-Qiang. 2010

[5]Effects of Applying Accumulator Straw in Soil on Nutrient Uptake and Soil Enzyme Activity of Capsella bursa-pastoris under Cadmium Stress. Yang, Shuting,Shi, Jun,Lv, Xiulan. 2016

[6]Effects of Cd2+ exposure on key life history traits and activities of four metabolic enzymes in Helicoverpa armigera (Lepidopteran: Noctuidae). Chen, Zhu,Huang, Yongjie,Yang, Shiyong,Zhang, Jinping,Ruuhola, Teija,Yang, Shiyong.

[7]Overexpression of Iris. lactea var. chinensis metallothionein IIMT2a enhances cadmium tolerance in Arabidopsis thaliana. Gu, Chun-Sun,Zhao, Yan-Hai,Huang, Su-Zhen,Gu, Chun-Sun,Zhao, Yan-Hai,Huang, Su-Zhen,Liu, Liang-qin,Zhu, Xu-dong,Deng, Yan-ming. 2014

[8]Methane alleviates alfalfa cadmium toxicity via decreasing cadmium accumulation and reestablishing glutathione homeostasis. Gu, Quan,Chen, Ziping,Cui, Weiti,Zhang, Yihua,Yu, Xiuli,Wang, Qingya,Shen, Wenbiao,Hu, Huali. 2018

[9]Identification of drought, cadmium and root-lesion nematode infection stress-responsive transcription factors in ramie. Zheng, Xia,Zhu, Siyuan,Tang, Shouwei,Liu, Touming,Zheng, Xia,Zhu, Siyuan,Tang, Shouwei,Liu, Touming. 2016

[10]Genome-wide transcriptomic profiling of ramie (Boehmeria nivea L. Gaud) in response to cadmium stress. Liu, Touming,Zhu, Siyuan,Tang, Qingming,Tang, Shouwei.

[11]Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings. Deng, Yong,Li, Defang,Huang, Yumin,Huang, Siqi. 2017

[12]Changes by cadmium stress in lipid peroxidation and activities of lipoxygenase and antioxidant enzymes in Arabidopsis are associated with extracellular ATP. Hou, Qin-zheng,Jia, Ling-yun,Liang, Jun-yu,Feng, Han-qing,Wen, Jing,Shi, Dai-long,Wang, Qing-wen,Ye, Guang-ji,Wang, Rong-fang. 2017

[13]Isolation and characterization of three cadmium-inducible promoters from Oryza sativa. Qiu, Chun-Hong,Li, Hao,Li, Juan,Qin, Rui-Ying,Xu, Rong-Fang,Yang, Ya-Chun,Ma, Hui,Song, Feng-Shun,Li, Li,Wei, Peng-Cheng,Yang, Jian-Bo.

[14]The effect of salinity pretreatment on Cd accumulation and Cd-induced stress in BADH-transgenic and nontransgenic rice seedlings. Shao, Guosheng,Zhang, Guoping,Shao, Guosheng,Chen, Mingxue,Wang, Weixia. 2008

[15]Phylogenetic Analysis and Expression Patterns of the MAPK Gene Family in Wheat (Triticum aestivum L.). Lian Wei-wei,Tang Yi-miao,Gao Shi-qing,Zhang Zhao,Zhao Xin,Zhao Chang-ping,Lian Wei-wei. 2012

[16]iTRAQ-based quantitative proteomics reveals the biochemical mechanism of cold stress adaption of razor clam during controlled freezing-point storage. Wang, Chong,Chu, Jianjun,Fu, Linglin,Wang, Yanbo,Zhao, Feng,Zhou, Deqing. 2018

[17]The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis. Wang, Gao-Qi,Tan, Feng,Zhang, Xiao-Yan,Chen, Qi-Jun,Wang, Xue-Chen,Wei, Peng-Cheng,Yu, Man. 2016

[18]Stk2, a Mitogen-Activated Protein Kinase from Setosphaeria turcica, Specifically Complements the Functions of the Fus3 and Kss1 of Saccharomyces cerevisiae in Filamentation, Invasive Growth, and Mating Behavior. Gu Shou-qin,Yang Yang,Zhang Chang-zhi,Fan Yu,Zhang Xiao-yu,Tian Lan,Hao Zhi-min,Cao Zhi-yan,Gong Xiao-dong,Han Jian-min,Dong Jin-gao,Li Po,Fan Yong-shan. 2013

[19]Recombinant TB9.8 of Mycobacterium bovis Triggers the Production of IL-12 p40 and IL-6 in RAW264.7 Macrophages via Activation of the p38, ERK, and NF-kappa B Signaling Pathways. Jia, Hong,Liu, Shuqing,Wu, Jing,Hou, Shaohua,Xin, Ting,Guo, Xiaoyu,Yuan, Weifeng,Zhang, Gaimei,Li, Ming,Zhu, Hongfei,Gao, Xintao,Qu, Hongfei,Zhu, Hongfei.

[20]MAP kinase gene STK1 is required for hyphal, conidial, and appressorial development, toxin biosynthesis, pathogenicity, and hypertonic stress response in the plant pathogenic fungus Setosphaeria turcica. Li Po,Gong Xiao-dong,Jia Hui,Fan Yong-shan,Zhang Yun-feng,Han Jian-min,Gu Shou-qin,Dong Jin-gao,Li Po,Fan Yong-shan,Zhang Yun-feng. 2016

作者其他论文 更多>>