Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat
文献类型: 外文期刊
第一作者: Li, Ning
作者: Li, Ning;Jia, Jizeng;Xia, Chuan;Liu, Xu;Kong, Xiuying
作者机构:
关键词: durum wheat;yellow-green leaf mutant;genetic mapping;agronomic traits
期刊名称:BREEDING SCIENCE ( 影响因子:2.086; 五年影响因子:2.632 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: The yellow-green leaf mutant has a non-lethal chlorophyll-deficient mutation that can be exploited in photosynthesis and plant development research. A novel yellow-green mutant derived from Triticum durum var. Cappelli displays a yellow-green leaf color from the seedling stage to the mature stage. Examination of the mutant chloroplasts with transmission electron microscopy revealed that the shape of chloroplast changed, grana stacks in the stroma were highly variable in size and disorganized. The pigment content, including chlorophyll a, chlorophyll b, total chlorophyll and carotene, was decreased in the mutant. In contrast, the chla/chl6 ratio of the mutants was increased in comparison with the normal green leaves. We also found a reduction in thephotosynthetic rate, fluorescence kinetic parameters and yield-related agronomic traits of the mutant. A genetic analysis revealed that two nuclear recessive genes controlled the expression of this trait. The genes were designated ygldl and ygld2. Two molecular markers co-segregated with these genes, ygld 1 co-segregated with the SSR marker wmcllO on chromosome 5AL and ygld 2 co-segregated with the SSR marker wmc28 on chromosome 5BL. These results will contribute to the gene cloning and the understanding of the mechanisms underlying chlorophyll metabolism and chloroplast development in wheat.
分类号: S33
- 相关文献
作者其他论文 更多>>
-
Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
作者:Hu, Jiahui;Yu, Qinghui;Hu, Jiahui;Wang, Juan;Muhammad, Tayeb;Yang, Tao;Li, Ning;Yang, Haitao;Yu, Qinghui;Wang, Baike
关键词:tomato; fruit ripening; metabolome; transcriptome; carotenoids; lycopene; ethenyl
-
Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat
作者:He, Yuqi;Zhang, Kaixuan;Shi, Yaliang;Lin, Hao;Huang, Xu;Lu, Xiang;Wang, Zhirong;Li, Wei;Tang, Yu;Liu, Xu;Zhou, Meiliang;Feng, Xibo;Shi, Taoxiong;Chen, Qingfu;Wang, Junzhen;Chapman, Mark A.;Germ, Mateja;Luthar, Zlata;Kreft, Ivan;Janovska, Dagmar;Meglic, Vladimir;Woo, Sun-Hee;Quinet, Muriel;Fernie, Alisdair R.
关键词:Domestication; Migration; Artificial selection; Buckwheat; Genomics
-
Identification of Black Spot Resistance in Broccoli (Brassica oleracea L. var. italica) Germplasm Resources
作者:Zhang, Quan;Li, Ning;Liu, Ning;Ding, Yunhua;Zhang, Quan;Ding, Yunhua;Branca, Ferdinando;Li, Ning;Liu, Ning
关键词:broccoli; black spot disease; germplasm resources; breeding
-
Q negatively regulates wheat salt tolerance through directly repressing the expression of TaSOS1 and reactive oxygen species scavenging genes
作者:Yang, Ziyi;Yang, Ruizhen;Bai, Wanqing;Chen, Wenxi;Kong, Xiuying;Qiao, Weihua;Zhang, Yunwei;Sun, Jiaqiang;Zhou, Yun
关键词:wheat; salt tolerance; reactive oxygen species; Q; TaWD40
-
Adiponectin attenuates H2O2-induced apoptosis in chicken skeletal myoblasts through the lysosomal-mitochondrial axis
作者:Wang, Han;Li, Chi;Zhu, Longbo;Liu, Zhengqun;Li, Ning;Zheng, Zi;Liang, Shiyue;Yan, Jun;Wang, Han;Li, Chi;Zhu, Longbo
关键词:Adiponectin; Apoptosis; Mitochondrial; Lysosomal; Skeletal myoblasts
-
Fungal necromass carbon contributes to organic carbon sequestration within soil macroaggregates under manure application combined with plastic film mulching
作者:Liu, Xu;An, Tingting;Xu, Yingde;Li, Shuangyi;Wang, Jingkuan;Liu, Xu;Bol, Roland;Peng, Chang
关键词:Plastic film mulching; Fertilizer application; Microbial necromass carbon; Soil aggregates; Soil organic carbon
-
"Qi Nan" agarwood restores podocyte autophagy in diabetic kidney disease by targeting EGFR signaling pathway
作者:Li, Ning;Liu, Xuenan;Duan, Yingling;Zhang, Yu;Lan, Tian;Wang, Hao;Dai, Haofu;Lan, Tian;Zhou, Ping
关键词:DKD; "QN" agarwood; Podocytes; Autophagy; EGFR