OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice

文献类型: 外文期刊

第一作者: Ou, Shujun

作者: Ou, Shujun;Wang, Wei;Liu, Linchuan;Chu, Chengcai;Liu, Citao;Ou, Shujun;Wang, Wei;Liu, Linchuan;Chu, Chengcai;Mao, Bigang;Wu, Yanbin;Wang, Xiping

作者机构:

关键词: Rice (Oryza sativa L.);bZIP transcription factor;OsbZIP71;Abiotic stress tolerance;ABA sensitivity

期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The bZIP transcription factor (TF) family plays an important role in the abscisic acid (ABA) signaling pathway of abiotic stress in plants. We here report the cloning and characterization of OsbZIP71, which encodes a rice bZIP TF. Functional analysis showed that OsbZIP71 is a nuclear-localized protein that specifically binds to the G-box motif, but has no transcriptional activity both in yeast and rice protoplasts. In yeast two-hybrid assays, OsbZIP71 can form both homodimers and heterodimers with Group C members of the bZIP gene family. Expression of OsbZIP71 was strongly induced by drought, polyethylene glycol (PEG), and ABA treatments, but repressed by salt treatment. OsbZIP71 overexpressing (p35S::Osb-ZIP71) rice significantly improved tolerance to drought, salt and PEG osmotic stresses. In contrast, RNAi knockdown transgenic lines were much more sensitive to salt, PEG osmotic stresses, and also ABA treatment. Inducible expression (RD29A::OsbZIP71) lines were significantly improved their tolerance to PEG osmotic stresses, but hypersensitivity to salt, and insensitivity to ABA. Realtime PCR analysis revealed that the abiotic stress-related genes, OsVHA-B, OsNHX1, COR413-TM1, and OsMyb4, were up-regulated in overexpressing lines, while these same genes were down-regulated in RNAi lines. Chromatin immunoprecipitation analysis confirmed that OsbZIP71 directly binds the promoters of OsNHX1 and COR413-TM1 in vivo. These results suggest that OsbZIP71 may play an important role in ABA-mediated drought and salt tolerance in rice.

分类号: Q946

  • 相关文献

[1]The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Gao, Shi-Qing,Zhao, Chang-Ping,Tang, Yi-miao,Ma, You-Zhi,Zhao, Xin,Gao, Shi-Qing,Chen, Ming,Xu, Zhao-Shi,Li, Liancheng,Xu, Hui-jun,Ma, You-Zhi.

[2]Overexpression of a PLD alpha 1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Zhang, Jinpeng,Xie, Yuanhong,Wang, Guoying,Peng, Yunling,Peng, Yunling,Cao, Gaoyi,Liu, Xihui,Lu, Minhui. 2010

[3]An Apple Protein Kinase MdSnRK1.1 Interacts with MdCAIP1 to Regulate ABA Sensitivity. Liu, Xiao-Juan,Liu, Xin,Han, Peng-Liang,You, Chun-Xiang,Hao, Yu-Jin,An, Xiu-Hong.

[4]Isolation and characterization of Viviparous-1 haplotypes in wheat related species. Sun, Y. W.,Xia, L. Q.,Yang, Y.,Shewry, P. R.,Jones, H. D.. 2012

[5]ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Xu, Dong-Bei,Li, Xue-Yin,Chen, Yao-Feng,Gao, Shi-Qing,Ma, You-Zhi,Xu, Zhao-Shi,Li, Lian-Cheng,Chen, Ming,Gao, Shi-Qing,Zhao, Chang-Ping,Tang, Yi-Miao,Li, Xue-Yin.

[6]ZmGRF, a GA regulatory factor from maize, promotes flowering and plant growth in Arabidopsis. Xu, Miaoyun,Yang, Hongmei,Hu, Zhiqiu,Hu, Xiaolong,Luan, Mingda,Zhang, Lan,Fan, Yunliu,Wang, Lei,Lu, Yunming,He, Jingcheng,Yang, Hongmei,Hu, Zhiqiu,Hu, Xiaolong,Luan, Mingda.

[7]Molecular Strategies for Addressing Gene Flow Problems and Their Potential Applications in Abiotic Stress Tolerant Transgenic Plants. Ding, Jing,Li, Yi,Ding, Jing,Li, Yi,Duan, Hui,Deng, Ziniu,Zhao, Degang,Yi, Ganjun,Li, Yi. 2014

[8]Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. Sun, Dongfa,Li, Zhigang,Yuan, Shuangrong,Jia, Haiyan,Gao, Fangyuan,Zhou, Man,Yuan, Ning,Wu, Peipei,Hu, Qian,Luo, Hong,Jia, Haiyan,Jia, Haiyan,Gao, Fangyuan. 2017

[9]Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Bie, Xiaomin,Wang, Ke,She, Maoyun,Du, Lipu,Zhang, Shuangxi,Gao, Xiang,Lin, Zhishan,Ye, Xingguo,Bie, Xiaomin,Zhang, Shuangxi,Li, Jiarui. 2012

[10]irrE, an exogenous gene from deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stresses. Zhang Ying,Ma, Ruiqiang,Zhou, Zhengfu,Lu, Wei,Zhang, Wei,Chen, Ming,Zhang Ying,Ma, Ruiqiang,Zhao, Zhonglin.

[11]Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. Chen, Hu-hui,Li, Yin,Huang, Shang-zhi,Chu, Pu,Zhou, Yu-liang,Ding, Yu,Ding, Yu,Jiang, Li-wen,Liu, Jun.

[12]GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. Butt, Hamama Islam,Li, Fuguang,Zhang, Xueyan,Yang, Zhaoen,Gong, Qian,Chen, Eryong,Wang, Xioaqian,Zhao, Ge,Ge, Xiaoyang,Zhang, Xueyan,Li, Fuguang. 2017

[13]ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Xu, Miaoyun,Li, Luhui,Fan, Yunliu,Wang, Lei,Li, Luhui,Wan, Jianmin. 2011

[14]Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants. Wang, Xi,Wang, Xi,Cai, Hua,Li, Yong,Zhu, Yanming,Ji, Wei,Bai, Xi,Zhu, Dan,Sun, Xiaoli.

[15]OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Gao, Feng,Xiong, Aisheng,Peng, Rihe,Jin, Xiaofen,Xu, Jing,Zhu, Bo,Yao, Quanhong,Chen, Jianmin.

[16]The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants. Zhai, Yiqian,Zhang, Lichao,Xia, Chuan,Fu, Silu,Zhao, Guangyao,Jia, Jizeng,Kong, Xiuying.

[17]Heat Shock Protein 90 in Plants: Molecular Mechanisms and Roles in Stress Responses. Xu, Zhao-Shi,Li, Zhi-Yong,Chen, Yang,Chen, Ming,Li, Lian-Cheng,Ma, You-Zhi. 2012

[18]QTL Detection and Epistasis Analysis for Heading Date Using Single Segment Substitution Lines in Rice (Oryza sativa L.). Li Guang-xian,Li Si-shen,Chen Ai-hua,Liu Xu,Wang Wen-ying,Ding Han-feng,Li Jun,Liu Wei,Yao Fang-yin,Li Guang-xian. 2014

[19]Genetic analysis and mapping of rice (Oryza sativa L.) male-sterile (OsMS-L) mutant. Liu, HS,Chu, HW,Li, H,Wang, HM,Wei, JL,Li, N,Ding, SY,Huang, H,Ma, H,Huang, CF,Luo, D,Yuang, Z,Liu, JH,Zhang, DB. 2005

[20]Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). Pan, Shenggang,Rasul, Fahd,Li, Wu,Tian, Hua,Mo, Zhaowen,Duan, Meiyang,Tang, Xiangru,Pan, Shenggang,Tian, Hua,Mo, Zhaowen,Duan, Meiyang,Tang, Xiangru,Rasul, Fahd,Li, Wu. 2013

作者其他论文 更多>>