Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa)

文献类型: 外文期刊

第一作者: Li, Zhi

作者: Li, Zhi;Zhang, Yingxin;Liu, Lin;Liu, Qunen;Bi, Zhenzhen;Yu, Ning;Cheng, Shihua;Cao, Liyong;Li, Zhi;Li, Zhi;Zhang, Yingxin;Cheng, Shihua;Cao, Liyong

作者机构:

关键词: Lesion mimic mutant;Early senescence;lmes1;Fine mapping;Oryza sativa L

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A novel rice mutant, lesion mimic and early senescence 1 (lmes1), was induced from the rice 93-11 cultivar in a γ-ray field. This mutant exhibited spontaneous disease-like lesions in the absence of pathogen attack at the beginning of the tillering stage. Moreover, at the booting stage, lmes1 mutants exhibited a significantly increased MDA but decreased chlorophyll content, soluble protein content and photosynthetic rate in the leaves, which are indicative of an early senescence phenotype. The lmes1 mutant was significantly more resistant than 93-11 against rice bacterial blight infection, which was consistent with a marked increase in the expression of three resistance-related genes. Here, we employed a map-based cloning approach to finely map the lmes1 gene. In an initial mapping with 94 F_2 individuals derived from a cross between the lmes1 mutant and Nipponbare, the lmes1 gene was located in a 10.6-cM region on the telomere of the long arm of chromosome 7 using simple sequence repeat (SSR) markers. To finely map lmes1, we derived two F_2 populations with 940 individuals from two crosses between the lmes1 mutant and two japonica rice varieties, Nipponbare and 02428. Finally, the lmes1 gene was mapped to an 88-kb region between two newly developed inDel markers, Zl-3 and Zl-22, which harbored 15 ORFs.

分类号: Q945`Q946

  • 相关文献

[1]SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit mu 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). Qiao, Yongli,Jiang, Wenzhu,Lee, JooHyun,Park, BongSoo,Choi, Min-Seon,Piao, Rihua,Woo, Mi-Ok,Paek, Nam-Chon,Seo, Hak Soo,Koh, Hee-Jong,Qiao, Yongli,Jiang, Wenzhu,Lee, JooHyun,Park, BongSoo,Choi, Min-Seon,Piao, Rihua,Woo, Mi-Ok,Paek, Nam-Chon,Seo, Hak Soo,Koh, Hee-Jong,Roh, Jae-Hwan,Han, Longzhi. 2010

[2]SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Chen, Xifeng,Hao, Liang,Pan, Jianwei,Zheng, Xixi,Jin, Yang,Gu, Zhimin,Ma, Bojun,Chen, Xifeng,Jiang, Guanghuai,Zhai, Wenxue,Qian, Qian.

[3]Characterization and mapping of a novel light-dependent lesion mimic mutant Imm6 in rice (Oryza sativa L.). Xiao Gui-qing,Lu Xiang-yang,Xiao Gui-qing,Lu Xiang-yang,Zhang Hai-wen,Huang Rong-feng. 2015

[4]Fine mapping and candidate gene analysis of LM3, a novel lesion mimic gene in rice. Shi, Chunhai,Zeng, Yuxiang,Ma, Liangyong,Ji, Zhijuan,Wen, Zhihua,Li, Ximing,Yang, Changdeng.

[5]Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. Chen, Xifeng,Fu, Shufang,Zhang, Pinghua,Gu, Zhimin,Liu, Jianzhong,Ma, Bojun,Qian, Qian. 2013

[6]IDENTIFICATION OF A SET OF RFLP PROBES FOR SUBSPECIES DIFFERENTIATION IN ORYZA-SATIVA L. QIAN, HR,ZHUANG, JY,LIN, HX,LU, J,ZHENG, KL. 1995

[7]Genome-Wide Disruption of Gene Expression in Allopolyploids but Not Hybrids of Rice Subspecies. Xu, Chunming,Bai, Yan,Zhao, Na,Hu, Lanjuan,Liu, Bao,Xu, Chunming,Wendel, Jonathan F.,Lin, Xiuyun,Zhao, Na,Gong, Zhiyun. 2014

[8]QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Mei, HW,Xu, JL,Li, ZK,Yu, XQ,Guo, LB,Wang, YP,Ying, CS,Luo, LJ. 2006

[9]YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. Zhang, Fantao,Luo, Xiangdong,Xie, Jiankun,Hu, Biaolin,Wan, Yong. 2013

[10]Loss-of-function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice. Fan, Xiaolei,Wu, Jiemin,Chen, Taiyu,Chen, Hao,Zhou, Fei,Lin, Yongjun,Fan, Xiaolei,Wu, Jiemin,Chen, Taiyu,Chen, Hao,Zhou, Fei,Lin, Yongjun,Tie, Weiwei. 2015

[11]Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme. He, Y. X.,Zheng, T. Q.,Wang, L. F.,Gao, Y. M.,Zhai, H. Q.,Xu, J. L.,Zhu, L. H.,Li, Z. K.,He, Y. X.,Xu, Z. J.,He, Y. X.,Hao, X. B.,Hua, Z. T.,Li, Z. K.. 2010

[12]LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Xiong, Guo Sheng,Hu, Xing Ming,Jiao, Yong Qing,Yu, Yan Chun,Chu, Cheng Cai,Li, Jia Yang,Qian, Qian,Wang, Yong Hong. 2006

[13]Identifying different types of dedifferentiated microspores from indica-japonica F-1 hybrids with subspecies-differentiating RFLP probes in rice. Xie, JH,Lu, J,Zhuang, JY,Lin, HX,Qian, HR,Gao, MW,Zheng, KL. 1997

[14]Mutation of the RDR1 gene caused genome-wide changes in gene expression, regional variation in small RNA clusters and localized alteration in DNA methylation in rice. Wang, Ningning,Zhang, Di,Wang, Zhenhui,Xun, Hongwei,Wang, Hui,Huang, Wei,Liu, Ying,Li, Ning,Ou, Xiufang,Zhang, Chunyu,Liu, Bao,Wang, Ningning,Ma, Jian,Lin, Xiuyun,Zhang, Chunyu,Wang, Ningning,Wang, Ming-Bo. 2014

[15]Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. Wang, Wen-Sheng,Zhao, Xiu-Qin,Li, Min,Huang, Li-Yu,Xu, Jian-Long,Zhang, Fan,Cui, Yan-Ru,Fu, Bin-Ying,Li, Zhi-Kang,Li, Min,Xu, Jian-Long,Fu, Bin-Ying,Li, Zhi-Kang.

[16]Large-scale production of enhancer trapping lines for rice functional genomics. Yang, YZ,Peng, H,Huang, HM,Wu, JX,Ha, SR,Huang, DF,Lu, TG.

[17]Genetic mapping of a QTL controlling source-sink size and heading date in rice. Cheng, Shihua.

[18]Construction of chromosomal segment substitution lines and genetic dissection of introgressed segments associated with yield determination in the parents of a super-hybrid rice. Liu, Xi,Zhao, Zhigang,Liu, Linglong,Xiao, Yinghui,Tian, Yunlu,Liu, Shi-Jia,Chen, Liangming,Wang, Yihua,Liu, Yuqiang,Chen, Saihua,Zhang, Wenwei,Wang, Chunming,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[19]Transcriptome Analysis of a Progeny of Somatic Hybrids of Cultivated Rice (Oryza sativa L.) and Wild Rice (Oryza meyeriana L.) With High Resistance to Bacterial Blight. Wang, Xu-Ming,Zhou, Jie,Yang, Yong,Yu, Fei-Bo,Chen, Juan,Yu, Chu-Lang,Wang, Fang,Cheng, Ye,Yan, Cheng-Qi,Chen, Jian-Ping,Yu, Fei-Bo,Chen, Juan. 2013

[20]Genetic dissection of large grain shape in rice cultivar 'Nanyangzhan' and validation of a grain thickness QTL (qGT3.1) and a grain length QTL (qGL3.4). Zhao, Da,Li, Pingbo,Wang, Lingqiang,Sun, Liang,Xia, Duo,Luo, Lijun,Gao, Guanjun,Zhang, Qinglu,He, Yuqing,Zhao, Da,Li, Pingbo,Wang, Lingqiang,Sun, Liang,Xia, Duo,Luo, Lijun,Gao, Guanjun,Zhang, Qinglu,He, Yuqing,Luo, Lijun. 2017

作者其他论文 更多>>