Effects of specific organs on seed oil accumulation in Brassica napus L.

文献类型: 外文期刊

第一作者: Liu, Jing

作者: Liu, Jing;Hua, Wei;Yang, Hongli;Sun, Xingchao;Wang, Xinfa;Liu, Guihua;Wang, Hanzhong;Guo, Tingting

作者机构:

关键词: Rapeseed;Oil content;Maternal effect;Organ;Oil regulation

期刊名称:PLANT SCIENCE ( 影响因子:4.729; 五年影响因子:5.132 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Seed oil content is an important agricultural characteristic in rapeseed breeding. Genetic analysis shows that the mother plant and the embryo play critical roles in regulating seed oil accumulation. However, the overwhelming majority of previous studies have focused on oil synthesis in the developing seed of rapeseed. In this study, to elucidate the roles of reproductive organs on oil accumulation, silique, ovule, and embryo from three rapeseed lines with high oil content (zy036, 6F313, and 61616) were cultured in vitro. The results suggest that zy036 silique wall, 6F313 seed coat, and 61616 embryo have positive impacts on the seed oil accumulation. In zy036, our previous studies show that high photosynthetic activity of the silique wall contributes to seed oil accumulation (Hua et al., 2012). Herein, by transcriptome sequencing and sucrose detection, we found that sugar transport in 6F313 seed coat might regulate the efficiency of oil synthesis by controlling sugar concentration in ovules. In 61616 embryos, high oil accumulation efficiency was partly induced by the elevated expression of fatty-acid biosynthesis-related genes. Our investigations show three organ-specific mechanisms regulating oil synthesis in rapeseed. This study provides new insights into the factors affecting seed oil accumulation in rapeseed and other oil crops

分类号: Q94

  • 相关文献

[1]Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Liu, Jing,Hua, Wei,Zhan, Gaomiao,Wei, Fang,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong.

[2]FOURIER TRANSFORM MID-INFRARED PHOTOACOUSTIC SPECTROSCOPY (FTIR-PAS) COUPLED WITH CHEMOMETRICS FOR NON-DESTRUCTIVE DETERMINATION OF OIL CONTENT IN RAPESEED. Lu, Y.,Du, C.,Yu, C.,Zhou, J..

[3]Influence of Photoperiod on the Accumulation of Metabolites during Diapause Induction in Cotesia vestalis (Haliday) (Hymenoptera: Braconidae). Hao, Zhong-Ping,Chen, Chao,Shi, Zu-Hua,Hao, Zhong-Ping.

[4]Genetic and Cytological Analyses of the Natural Variation of Seed Number per Pod in Rapeseed (Brassica napus L.). Yang, Yuhua,Wang, Ying,Zhan, Jiepeng,Shi, Jiaqin,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong. 2017

[5]Estimates of genetic and phenotypic parameters for weight and length in Paralichthys olivaceus (Temminck et Schlegel). Tian Yongsheng,Liang You,Chen Songlin,Xu Tianjun. 2011

[6]Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Liu, Jing,Hua, Wei,Hu, Zhiyong,Yang, Hongli,Zhang, Liang,Deng, Linbin,Sun, Xingchao,Wang, Xinfa,Wang, Hanzhong,Li, Rongjun.

[7]Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Guo, Baozhu,Pandey, Manish K.,Khera, Pawan,Varshney, Rajeev K.,Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Culbreath, Albert K.,Guo, Baozhu,Wang, Ming Li,Tonnis, Brandon,Barkley, Noelle A.,Qiao, Lixian,Feng, Suping,Wang, Hui,Wang, Jianping,Holbrook, C. Corley. 2014

[8]Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus. Gu, Jianwei,Chao, Hongbo,Li, Maoteng,Gu, Jianwei,Xiang, Jun,Gan, Jianping,Li, Maoteng,Wang, Hao,Li, Yonghong,Li, Dianrong,Lu, Guangyuan,Zhang, Xuekun,Long, Yan. 2017

[9]Earthworms Increased Rape Seed Yield and Colza Oil. Zhang, Shu-jie,Liao, Xing,Hu, Xiao-jia,Yu, Chang-bing,Xie, Li-hua,Li, Yin-shui,Che, Zhi,Liao, Xiang-sheng. 2013

[10]Establishment and Application of Model for Determining Oil Content of Cottonseed Using Near Infrared Spectroscopy. Shang Lian-guang,Li Yu-hua,Wang Dan,Xiong Min,Hua Jin-ping,Shang Lian-guang,Li Yu-hua,Wang Dan,Xiong Min,Hua Jin-ping,Li Jun-hui,Wang Yu-mei. 2015

[11]Quantitative trait loci underlying the development of seed composition in soybean (Glycine max L. Merr.). Li, Wenbin,Sun, Desheng,Du, Yuping,Chen, Qingshan,Zhang, Zhongchen,Qiu, Lijuan,Sun, Genlou.

[12]Overexpression of Heteromeric GhACCase Subunits Enhanced Oil Accumulation in Upland Cotton. Cui, Yupeng,Liu, Zhengjie,Zhao, Yanpeng,Li, Le,Wu, Han,Xu, Suixi,Hua, Jinping,Liu, Zhengjie,Wang, Yumei,Huang, Yi.

[13]Genetic analysis on oil content in rapeseed (Brassica napus L.). Wang, Xinfa,Liu, Guihua,Yang, Qing,Hua, Wei,Liu, Jing,Wang, Hanzhong. 2010

[14]Cloning and functions analysis of a pyruvate dehydrogenase kinase in Brassica napus. Hu, Zhi-Yong,Zhan, Gao-Miao,Wang, Han-Zhong,Hua, Wei,Li, Rong-Jun,Zhang, Hua-Shan. 2011

[15]Characterization and identification of ISSR markers associated with oil content in sea buckthorn berries. Ding, J.,Bao, Y. H.,Ding, J.,Ruan, C. J.,Li, H.,Ding, J.,Guan, Y.,Shan, J. Y.. 2016

[16]An Integrated Quantitative Trait Locus Map of Oil Content in Soybean, Glycine max (L.) Merr., Generated Using a Meta-Analysis Method for Mining Genes. Han Xue,Liu Chun-yan,Jiang Hong-wei,Hu Guo-hua,Qi Zhao-ming,Sun Ya-nan,Wu Qiong,Du Xiang-yu,Liu Chun-yan,Chen Qing-shan,Shan Da-peng. 2011

[17]Overexpression of a foxtail millet Acetyl-CoA carboxylase gene in maize increases sethoxydim resistance and oil content. Dong, Zhigang,Zhao, Huji,He, Junguang,Huai, Junling,Lin, Heng,Wang, Guoying,Dong, Zhigang,Zheng, Jun,Liu, Yunjun,Wang, Guoying. 2011

[18]QTL mapping of kernel oil content of chromosome 6 in a high oil maize mutant (Zea mays L.). Han Jing,Wang Hongwu,Chen Shaojiang,Wang Hongwu,Han Jing.

[19]Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. Su, Ying,Liang, Wei,Liu, Zhengjie,Zhao, Yanpeng,Ijaz, Babar,Hua, Jinping,Wang, Yumei.

[20]Genetic analysis and QTL mapping of oil content and seed index using two recombinant inbred lines and two backcross populations in Upland cotton. Shang, Lianguang,Abduweli, Abdugheni,Hua, Jinping,Wang, Yumei.

作者其他论文 更多>>