Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil

文献类型: 外文期刊

第一作者: Zhang, Juan

作者: Zhang, Juan;Liu, Hui;Dai, Jiu-Lan;Zhang, Juan;Wang, Li-Hong;Yang, Jun-Cheng

作者机构:

关键词: Heavy metals;Bacterial diversity;Health risks;Multivariate analysis;16S rRNA gene

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The toxicities and effects of various metals and metalloids would be misunderstood by health risks based on their concentrations, when their effects on bacterial and ecological functions in soil are disregarded. This study investigated the concentrations and health risks of heavy metals, soil properties, and bacterial 16S rRNA gene in soil around the largest fresh water lake in North China. The health risks posed by Mn and AS were higher than those of other heavy metals and metalloids. Mn, As, and C were significantly correlated with the bacterial species richness indices. According to canonical correspondence analysis, species richness was mainly affected by Mn, Pb, As, and organic matter, while species evenness was mainly affected by Mn, pH, N, C, Cd, and Pb. Covariable analysis confirmed that most effects of metals on bacterial diversity were attributed to the combined effects of metals and soil properties rather than single metals. Most bacteria detected in (almost) all soil were identified as Gamrnaproteobacteria. Specific bacteria belonging to Proteobacteria (Gamma, Alpha, Epsilon, and Beta), Firmicutes, Actinobacteria, Cyanobacterium, Nitrospirae, and Fusobacterium were only identified in soil with high concentrations of Mn, Pb, and As, indicating their remediation potency. Bacterial abilities and mechanisms in pollutant resistance and element cycling in the region were also discussed. (C) 2014 Elsevier B.V. All rights reserved.

分类号: X1

  • 相关文献

[1]Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Wang, Zhi,Xiao, Bangding,Song, Lirong,Wu, Xingqiang,Zhang, Junqian,Wang, Chunbo,Wang, Zhi,Zhang, Junqian,Wu, Xingqiang. 2011

[2]Replacing fish meal by food waste in feed pellets to culture lower trophic level fish, containing acceptable levels of organochlorine pesticides: Health risk assessments. Cheng, Zhang,Mo, Wing-Yin,Man, Yu-Bon,Wong, Ming-Hung,Cheng, Zhang,Mo, Wing-Yin,Man, Yu-Bon,Wong, Ming-Hung,Cheng, Zhang,Man, Yu-Bon,Wong, Ming-Hung,Nie, Xiang-Ping,Li, Kai-Bing.

[3]Distribution of Benthic Macroinvertebrates in Relation to Environmental Variables across the Yangtze River Estuary, China. Chao, Min,Shi, Yunrong,Quan, Weimin,Shen, Xinqiang,An, Chuanguang,Yuan, Qi,Huang, Houjian,Shi, Yunrong,Huang, Houjian. 2012

[4]Exploring Geographical Differentiation of the Hoelen Medicinal Mushroom, Wolfiporia extensa (Agaricomycetes), Using Fourier-Transform Infrared Spectroscopy Combined with Multivariate Analysis. Li, Yan,Zhang, Ji,Zhao, Yanli,Wang, Yuanzhong,Jin, Hang,Li, Yan,Liu, Honggao.

[5]Determination and Multivariate Analysis of Mineral Elements in the Medicinal Hoelen Mushroom, Wolfiporia extensa (Agaricomycetes), from China. Sun, Jing,Li, Wanyi,Sun, Jing,Zhang, Ji,Zhao, Yanli,Wang, Yuanzhong,Li, Wanyi.

[6]Analysis of fatty acid composition of sea cucumber Apostichopus japonicus using multivariate statistics. Xu Qinzeng,Xu Qiang,Yang Hongsheng,Gao Fei. 2014

[7]ICP-AES Determination of Mineral Content in Boletus Tomentipes Collected from Different Sites of China. Wang Xue-mei,Li Jie-qing,Liu Hong-gao,Zhang Ji,Wang Yuan-zhong,Li Tao. 2015

[8]Strategies for structure elucidation of small molecules using gas chromatography-mass spectrometric data. Zhang, Liangxiao,Tang, Chunlan,Xiao, Hongbin,Zhang, Liangxiao,Cao, Dongsheng,Fan, Wei,Liang, Yizeng,Zeng, Yingxu,Tan, Binbin,Zeng, Maomao.

[9]Structure of Allozymatic Diversity of Ten Temperate and Adapted Exotic Breeding Populations of Maize (Zea mays L.). Zheng Da-hao,Li Yan-ru,Yu Yang,Wang Zhen-ping. 2009

[10]Living coccolithophore assemblages in the Yellow and East China Seas in response to physical processes during fall 2013. Luan, Qingshan,Wang, Jun,Liu, Sumei,Zhou, Feng,Wang, Jun. 2016

[11]The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China. Yao, Xie-Feng,Guo, Jian-hua,Zhang, Jiu-ming,Tian, Li,Zhang, Jiu-ming,Tian, Li. 2017

[12]Are Phenacoccus solani Ferris and P. defectus Ferris (Hemiptera: Pseudococcidae) distinct species?. Chatzidimitriou, Evangelia,Simonato, Mauro,Martinez-Sanudo, Isabel,Pellizzari, Giuseppina,Watson, Gillian W.,Tanaka, Hirotaka,Zhao, Jing.

[13]Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Lu, Anxiang,Zhang, Shuzhen,Lu, Anxiang,Wang, Jihua,Han, Ping,Qin, Xiangyang,Wang, Kaiyi.

[14]Hyperspectral imaging combined with multivariate analysis and band math for detection of common defects on peaches (Prunus persica). Zhang, Baohua,Li, Jiangbo,Fan, Shuxiang,Huang, Wenqian,Zhao, Chunjiang,Zhang, Baohua,Zhao, Chunjiang,Liu, Chengliang,Huang, Danfeng.

[15]Ultraviolet spectroscopy combined with ultra-fast liquid chromatography and multivariate statistical analysis for quality assessment of wild Wolfiporia extensa from different geographical origins. Li, Yan,Zhang, Ji,Jin, Hang,Wang, Yuanzhong,Li, Yan,Zhang, Ji,Jin, Hang,Wang, Yuanzhong,Li, Yan,Liu, Honggao.

[16]Bacterial Diversity in the Digestive Tracts of Four Indian Air-Breathing Fish Species Investigated by PCR Based Denaturing Gradient Gel Electrophoresis. He, Suxu,Zhou, Zhigang,Huang, Lu,Banerjee, Goutam,Ray, Arun Kumar,Ringo, Einar. 2016

[17]Diversity of bacterioplankton in the surface seawaters of Drake Passage near the Chinese Antarctic station. Xing, Mengxin,Li, Zhao,Wang, Wei,Sun, Mi. 2015

[18]Rumen Bacterial Diversity of Water Buffalo (Bubalus bubalis) as Influenced by Concentrate Levels. Yang, Chengjian,Zou, Caixia,Liang, Xin,Wei, Shengju,Li, Shulu,Liang, Xianwei,Yang, Bingzhuang,Luo, Hua. 2013

[19]Rumen Bacterial Diversity of Murrah and Nili-Rivi Buffalo (Bubalus bubalis) Assessed by 454 GS FLX Pyrosequencing. Yang, Chengjian,Zou, Caixia,Liang, Xin,Wei, Shengju,Li, Shulu,Liang, Xianwei,Yang, Bingzhuang,Luo, Hua. 2013

[20]Effect of fumigation with 1,3-dichloropropene on soil bacterial communities. Liu, Xiumei,Cheng, Xingkai,Wang, Kaiyun,Qiao, Kang,Wang, Hongyan.

作者其他论文 更多>>