Genetic Mapping Reveals Sophisticated Responses of Malus domestica to Botryosphaeria dothidea Isolates

文献类型: 外文期刊

第一作者: Cui, Mei Sha

作者: Cui, Mei Sha;Yang, Li Li;Han, Yuan Yuan;Wang, Yi;Zhang, Xin Zhong;Han, Zhen Hai;Zhang, Qiong;Han, Yue Peng;Zhao, Yong Bo;Li, Chun Min;Chen, Dong Mei;Yang, Feng Qiu

作者机构:

关键词: apple;bot canker;fruit ring rot;major gene loci;quantitative trait loci

期刊名称:JOURNAL OF PHYTOPATHOLOGY ( 影响因子:1.789; 五年影响因子:1.574 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Infection by the globally distributed pathogenic fungus Botryosphaeria dothidea (Moug.) Ces. et de Not. causes bot canker on the stems, branches and limbs or causes fruit ring rot (FRR) on the fruit in apple. To investigate the relationship between resistance to bot canker and FRR and among resistance mechanisms in response to different pathogen isolates, 34 major gene loci and six quantitative trait loci (QTLs) for bot canker and FRR resistance/susceptibility were genetically mapped on Malus genome using an F1 hybrid population (JonathanxGolden Delicious) in 2008 and 2009. None of the QTLs for bot canker and FRR overlapped with the region of the major gene loci. Some of the FRR- and bot canker-associated loci either coincided or overlapped, and some were independent, suggesting that the responses of different organs to the pathogen would be correlated but might deviate from each other. Some major gene loci and QTLs associated with different pathogen isolates of bot canker or, FRR were mapped to different regions of the genome. The results indicated that not only did the resistance mechanisms differ between bot canker and FRR but also that genetic differentiation occurred among pathogen isolates.

分类号: Q945

  • 相关文献

[1]Genetic analysis of wild apple resources in Shandong province based on inter-simple sequence repeats (ISSR) and sequence-specific amplification polymorphism (S-SAP) markers. He, Ping,Li, Linguang,Li, Huifeng,Wang, Haibo,Yang, Jianming,Wang, Yuxia. 2011

[2]Differential expression and modification of proteins during ontogenesis in Malus domestica. Cao, Xin,Gao, Yan,Wang, Yi,Han, Zhen H.,Zhang, Xin Z.,Li, Chun M.,Zhao, Yong B.. 2011

[3]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[4]A bi-layer model for nondestructive prediction of soluble solids content in apple based on reflectance spectra and peel pigments. Huang, Wenqian. 2018

[5]Field dissipation of trifloxystrobin and its metabolite trifloxystrobin acid in soil and apples. Wang, Chen,Wu, Junxue,Zhang, Yun,Wang, Kai,Zhang, Hongyan,Wang, Chen. 2015

[6]Ectopic expression of an apple apomixis-related gene MhFIE induces co-suppression and results in abnormal vegetative and reproductive development in tomato. Liu, Dan-Dan,Dong, Qing-Long,Fang, Mou-Jing,Chen, Ke-Qin,Hao, Yu-Jin,Dong, Qing-Long. 2012

[7]Visible-near infrared spectrum-based classification of apple chilling injury on cloud computing platform. Xia Ji'An,Yang YuWang,Han Chen,Cao HongXin,Ge DaoKuo,Zhang WenYu. 2018

[8]Temperature Compensation for Portable Vis/NIR Spectrometer Measurement of Apple Fruit Soluble Solids Contents. Li Yong-yu,Wang Jia-hua,Qi Shu-ye,Tang Zhi-hui,Jia Shou-xing. 2012

[9]Protein phosphorylation differs significantly among ontogenetic phases in Malus seedlings. Wang, Yan,Wang, Yi,Han, Zhen Hai,Zhang, Xin Zhong,Zhao, Yong Bo,Chen, Dong Mei. 2014

[10]A Comparative Analysis of DNA Methylation in Diploid and Tetraploid Apple (Malus x domestica Borkh.). He, Ping,Cheng, Lailiang,Li, Huifeng,Wang, Haibo,Li, Linguang. 2017

[11]Concentrations and dissipation of difenoconazole and fluxapyroxad residues in apples and soil, determined by ultrahigh-performance liquid chromatography electrospray ionization tandem mass spectrometry. Jia, Chunhong,Zhao, Ercheng,Chen, Li,Yu, Pingzhong,Jing, Junjie,He, Min,Zheng, Yongquan.

[12]Detection of Pesticide (Chlorpyrifos) Residues on Fruit Peels Through Spectra of Volatiles by FTIR. Xiao, Guangdong,Dong, Daming,Zheng, Ling,Zhao, Chunjiang,Xiao, Guangdong,Liao, Tongqing,Zhang, Dongyan,Li, Yang.

[13]Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi.

[14]Insertion of a solo LTR retrotransposon associates with spur mutations in 'Red Delicious' apple (Malus x domestica). Han, Mengxue,Qiu, Huarong,Guo, Jing,Mu, Wenlei,Sun, Jun,Sun, Qibao,Zhou, Junyong,Lu, Lijuan,Han, Mengxue,Mu, Wenlei.

[15]Malus domestica ADF1 severs actin filaments in growing pollen tubes. Yang, Qing,Wang, ShengNan,Wu, ChuanBao,Zhang, QiuLei,Zhang, Yi,Li, Yang,Hao, Li,Gu, Zhaoyu,Li, Wei,Li, Tianzhong,Chen, QiuJu.

[16]A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. Sun, Rui,Chang, Yuansheng,Wang, Yi,Li, Hui,Wu, Ting,Zhang, Xinzhong,Han, Zhenhai,Yang, Fengqiu,Zhao, Yongbo,Chen, Dongmei. 2015

[17]Genomic organization and expression analysis of a farnesyl diphosphate synthase gene (FPPS2) in apples (Malus domestica Borkh.). Yuan, Kejun,Wang, Changjun,Xin, Li,Zhang, Anning,Ai, Chengxiang.

[18]MdMYB9 and MdMYB11 are Involved in the Regulation of the JA-Induced Biosynthesis of Anthocyanin and Proanthocyanidin in Apples. An, Xiu-Hong,Tian, Yi,Chen, Ke-Qin,Liu, Xiao-Juan,Liu, Dan-Dan,Xie, Xing-Bin,Hao, Yu-Jin,An, Xiu-Hong,Tian, Yi,Chen, Ke-Qin,Liu, Xiao-Juan,Liu, Dan-Dan,Xie, Xing-Bin,Hao, Yu-Jin,An, Xiu-Hong,Tian, Yi,Chen, Ke-Qin,Liu, Xiao-Juan,Liu, Dan-Dan,Xie, Xing-Bin,Hao, Yu-Jin,An, Xiu-Hong,Tian, Yi,Cheng, Cun-Gang,Cong, Pei-Hua.

[19]Functional identification of apple MdJAZ2 in Arabidopsis with reduced JA-sensitivity and increased stress tolerance. An, Xiu-Hong,Li, En-Mao,Xu, Kai,Cheng, Cun-Gang,Hao, Yu-Jin.

[20]Changes in browning-related components of apple slices during different stages of instant controlled pressure drop-assisted hot air drying (AD-DIC). Gao, Kun,Bi, Jinfeng,Wang, Xueyuan,Gao, Kun,Chen, Qinqin,Bi, Jinfeng,Liu, Xuan,Wu, Xinye,Wang, Xueyuan.

作者其他论文 更多>>