iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.

文献类型: 外文期刊

第一作者: Xiaoyang Ge

作者: Xiaoyang Ge;Chaojun Zhang;Qianhua Wang;Zuoren Yang;Ye Wang;Xueyan Zhang;Zhixia Wu;Yuxia Hou;Jiahe Wu;Fuguang Li

作者机构:

关键词: hormone;iTRAQ;proteomics;respiration;somatic embryo development;stress upland cotton;Gossypium hirsutum

期刊名称:JOURNAL OF PROTEOME RESEARCH ( 影响因子:4.466; 五年影响因子:4.352 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Somatic embryo development (SED) in upland cotton shows low frequencies of embryo maturation and plantlet regeneration. Progress in increasing the regeneration rate has been limited. Here a global analysis of proteome dynamics between globular and cotyledonary embryos was performed using isobaric tags for relative and absolute quantitation to explore mechanisms underlying SED. Of 6318 proteins identified by a mass spectrometric analysis, 102 proteins were significantly up-regulated and 107 were significantly down-regulated in cotyledonary embryos. The differentially expressed proteins were classified into seven functional categories: stress responses, hormone synthesis and signal transduction, carbohydrate and energy metabolism, protein metabolism, cell wall metabolism, cell transport, and lipid metabolism. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that stress response, hormone homeostasis, and respiration and photosynthesis were involved in SED. Quantitative real-time PCR analysis confirmed the authenticity and accuracy of the proteomic analysis. Treatment of exogenous hormones showed that abscisic acid and jasmonic acid facilitate SED, whereas gibberellic acid inhibits SED and increases abnormal embryo frequency. Thus, global analysis of proteome dynamics reveals that stress response, hormone homeostasis, and respiration and photosynthesis determined cotton SED. The findings of this research improve the understanding of molecular processes, especially environmental stress response, involved in cotton SED.

分类号: Q7`Q51

  • 相关文献

[1]Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Li, Wu,Li, Wu,Zhao, Fu'an,Fang, Weiping,Xie, Deyi,Hou, Jianan,Yang, Xiaojie,Zhao, Yuanming,Tang, Zhongjie,Nie, Lihong,Lv, Shuping. 2015

[2]Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L.. Yuan Qin,Yu, Shuxun,Hengling Wei,Huiru Sun,Pengbo Hao,Hantao Wang,Junji Su,Shuxun Yu.

[3]Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. Wang, Xu-Chu,Li, Qin,Xiao, Guang-Hui,Liu, Gao-Jun,Liu, Nin-Jing,Qin, Yong-Mei,Wang, Xu-Chu,Jin, Xiang.

[4]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[5]Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Sun, Xiaochuan,Wang, Yan,Xu, Liang,Li, Chao,Zhang, Wei,Luo, Xiaobo,Jiang, Haiyan,Liu, Liwang,Sun, Xiaochuan,Sun, Xiaochuan,Wang, Yan,Xu, Liang,Luo, Xiaobo,Liu, Liwang. 2017

[6]Identification of cold-stress responsive proteins in Anabasis aphylla seedlings via the iTRAQ proteomics technique. Wang, Tingting,Wang, Mei,Chu, Guangming,Ye, Chunxiu,Ye, Chunxiu. 2017

[7]iTRAQ-based proteomic profiling of granulosa cells from lamb and ewe after superstimulation. Lin, Jiapeng,Lin, Jiapeng,Wu, Yangsheng,Han, Bing,Chen, Ying,Wang, Liqin,Li, Xiaolin,Liu, Mingjun,Huang, Juncheng. 2017

[8]iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Zhang, Hui,Li, Xiaojuan.

[9]iTRAQ Protein Profiling of Adventitious Root Formation in Mulberry Hardwood Cuttings. Tang, Zhuang,Du, Wei,Du, XiaoLong,Ban, YueYuan,Cheng, JiaLing,Du, Wei,Cheng, JiaLing.

[10]Proteomic Analysis Reveals Resistance Mechanism Against Chlorpyrifos in Frankliniella occidentalis (Thysanoptera: Thripidae). Yan, Dan-Kan,Hu, Min,Tang, Yun-Xia,Fan, Jia-Qin,Yan, Dan-Kan,Hu, Min,Tang, Yun-Xia,Fan, Jia-Qin,Yan, Dan-Kan.

[11]Proteomic analysis of differentially expressed proteins in the three developmental stages of Trichinella spiralis. Liu, J. Y.,Zhang, N. Z.,Li, W. H.,Li, L.,Yan, H. B.,Qu, Z. G.,Li, T. T.,Cui, J. M.,Yang, Y.,Jia, W. Z.,Fu, B. Q.,Jia, W. Z.,Fu, B. Q..

[12]iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes. Meng, Qingguo,Hou, Libo,Zhao, Yang,Huang, Xin,Gu, Wei,Wang, Wen,Meng, Qingguo,Hou, Libo,Zhao, Yang,Huang, Xin,Gu, Wei,Wang, Wen,Huang, Yanqing,Xia, Siyao.

[13]Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation. Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Zhu, Xing-Quan,He, Shuai,Zhou, Dong-Hui,Elsheikha, Hany M.,He, Shuai,Li, Qian.

[14]Analyses of the Molecular Mechanisms Associated with Silk Production in Silkworm by iTRAQ-Based Proteomics and RNA-Sequencing-Based Transcriptomics. Wang, Shaohua,You, Zhengying,Che, Jiaqian,Zhang, Yuyu,Qian, Qiujie,Zhong, Boxiong,Feng, Mao,Komatsu, Setsuko.

[15]Comparative proteomic analysis of virulent and avirulent strains of Toxoplasma gondii reveals strain-specific patterns. Zhou, Dong-Hui,Wang, Ze-Xiang,Zhou, Chun-Xue,He, Shuai,Zhu, Xing-Quan,Elsheikha, Hany M.,Zhou, Chun-Xue,He, Shuai. 2017

[16]Proteomic Differences between Developmental Stages of Toxoplasma gondii Revealed by iTRAQ-Based Quantitative Proteomics. Wang, Ze-Xiang,Zhou, Chun-Xue,He, Shuai,Zhou, Dong-Hui,Zhu, Xing-Quan,Zhou, Chun-Xue,Zhou, Chun-Xue,Elsheikha, Hany M.,He, Shuai,Zhu, Xing-Quan. 2017

[17]Comparative Proteomic Analysis Provides insight into the Key Proteins as Possible Targets Involved in Aspirin Inhibiting Biofilm Formation of Staphylococcus xylosus. Xu, Chang-Geng,Yang, Yan-Bei,Zhou, Yong-Hui,Hao, Mei-Qi,Ren, Yong-Zhi,Wang, Xiao-Ting,Chen, Jian-Qing,Muhammad, Ishfaq,Wang, Shuai,Li, Yan-Hua,Liu, Di,Li, Xiu-Bo,Li, Yan-Hua. 2017

[18]Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. Zeng, Rizhong.

[19]iTRAQ-based quantitative proteomic analysis of Macrobrachium rosenbergii hemocytes during Spiroplasma eriocheiris infection. Hou, Libo,Xiu, Yunji,Wang, Jian,Liu, Yuhan,Gu, Wei,Wang, Wen,Meng, Qingguo,Xiu, Yunji,Liu, Xiaoqian,Hou, Libo,Xiu, Yunji,Wang, Jian,Liu, Yuhan,Gu, Wei,Wang, Wen,Meng, Qingguo.

[20]Optimization and evaluation of microencapsulated artificial diet for mass rearing the predatory ladybird Propylea japonica (Coleoptera: Coccinellidae). Tan, Xiao-Ling,Wang, Su,Zhang, Fan,Tan, Xiao-Ling,Zhao, Jing. 2015

作者其他论文 更多>>