Effect of Application Ratio of Potassium over Nitrogen on Litchi Fruit Yield, Quality, and Storability

文献类型: 外文期刊

第一作者: Li, Guoliang

作者: Li, Guoliang;Yang, Shaohai;He, Zhaohuan;Zhou, Changmin;Yao, Lixian

作者机构:

关键词: Litchi;K2O:N ratio;yield;quality;storability

期刊名称:HORTSCIENCE ( 影响因子:1.455; 五年影响因子:1.617 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Soils of litchi orchards in China are commonly deficient in nitrogen and potassium. The cultivar Feizixiao litchis planted in a typical acidic upland orchard, which is low in nitrogen and potassium, were used as a subject in field experiments with different ratios of potassium to nitrogen (K2O:N = 0.6, 0.8, 1.0, 1.2, and 1.4). Field experiments were conducted from 2009 to 2012. The effects of K2O:N ratio on the yield, quality, and storability of litchi were investigated and discussed. Results indicated that with the increase of K2O:N ratio, fruit yield initially increased and then decreased, and litchi had the highest yield when K2O:N was 1.2. When K and N fertilizers were applied at the ratio of 1.2, litchi had a better fruit quality with higher vitamin C content, soluble sugar, and soluble solid. With the increase of K2O:N ratio, healthy fruit rate initially increased and then decreased. This rate reached the maximum value when K2O:N was 1.2. Meanwhile, fruit-rotting rate, peel-browning index, cell membrane permeability, and peroxidase (POD) activity decreased at first and then increased and reached the minimum value when the K2O:N ratio was 1.2. Therefore, litchi fruit had the highest yield, better quality, and best storage property when K2O:N was 1.2. Thus, this ratio is recommended for the main litchi production areas in China.

分类号: S6

  • 相关文献

[1]Dynamic changes of nutrition in litchi foliar and effects of potassium-nitrogen fertilization ratio. Li, G. L.,He, Z. H.,Zhou, C. M.,Yao, L. X.. 2015

[2]Effect of continuous negative pressure water supply on the growth, development and physiological mechanism of Capsicum annuum L.. Li Di,Shao Hong-ying,Wang Peng,Long Huai-yu,Zhang Shu-xiang,Wu Xue-ping. 2017

[3]The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L.. Xu, Mingyue,Ma, Haiqing,Zeng, Liu,Cheng, Yong,Lu, Guangyuan,Xu, Jinsong,Zhang, Xuekun,Zou, Xiling,Ma, Haiqing.

[4]Effects of Diluted Biogas Slurry as Fertilizer on Growth and Yield of Tomato in Greenhouse. Liu, X. R.,Jiang, W. J.,Yu, H. J.,Ning, X. J.. 2012

[5]Effects of Nitrogen-Phosphorus-Potassium Formula on Watermelon Yield and Quality. Zhang Rulian,Wang Qinfei,Gao Ling,Tang Fenlin. 2011

[6]Mutation of rice (Oryza sativa L.) LOX-1/2 near-isogenic lines with ion beam implantation and study of their storability. Song, Mei,Wu, Yuejin,Liu, B. M.,Jiang, J. Y.,Xu, X.,Yu, Z. L.,Zhang, Ying.

[7]Embryo abortion and pollen parent effects in 'Nuomici' and 'Guiwei' litchi. Xiang, X,Ou, LX,Qiu, YP,Yuan, PY,Chen, JZ. 2001

[8]Estimation the leaf phosphorus concentration of litchi (Litchi chinensis Sonn.) at different growth stages by canopy reflectance. Wang, Chongyang,Chen, Shuisen,Li, Dan,Liu, Wei,Huang, Siyu,Peng, Zhiping. 2015

[9]Quantification and recovery of anthocyanins from litchi pericarps. Liu Xueming,Zhang Mingwei,Chen Zhiyi,Shi Ying,Zou Yuxiao. 2013

[10]Biological control of insect pests in litchi orchards in China. Li, Dun-Song,Zhang, Bao-Xin,Song, Zi-Wei,Liao, Chunyan,Li, Dun-Song,Zhang, Bao-Xin,Song, Zi-Wei. 2014

[11]Effect of Application Ratio of Potassium over Nitrogen on Litchi Growth and Fruit Quality. Li, G. L.,Yang, B. M.,He, Z. H.,Zhou, C. M.,Tu, S. H.. 2014

[12]Postharvest physiology, storage and transportation of litchi fruits - A review. Shi, JX,Wang, CS,An, XZ,Li, JH,Zhao, M. 2001

[13]Construction of cDNA Library and Analysis of SSRs in ESTs of Litchi (Litchi chinensis Sonn.). Xiang, X.,Sun, Q. M.,Ou, L. X.,Zhao, J. S.,Chen, J. Z.,Cai, C. H.. 2012

[14]Development of a model for quality evaluation of litchi fruit. Cao, Ying,Gao, Haiyan,Chen, Hangjun,Fang, Xiangjun,Mu, Honglei,Tao, Fei,Jiang, Yueming.

[15]Preliminary Study on Different Rootstock-Scion Combinations in 'Shuangjianyuhebao' Litchi. Li, W. C.,Wei, Y. Z.,Shi, S. Y.,Wang, Y. C.,Liu, L. Q.,Hu, G. B.. 2014

[16]Membrane deterioration, enzymatic browning and oxidative stress in fresh fruits of three litchi cultivars during six-day storage. Li, Changbao,You, Xiangrong,Li, Li,Liao, Fen,He, Xuemei,Li, Zhichun,Zhang, Yayuan,Sun, Jian,Prasad, K. Nagendra,Peng, Hongxiang. 2012

[17]Core EST-SSR Marker Selection Based on Genetic Linkage Map Construction and Their Application in Genetic Diversity Analysis of Litchi (Litchi chinensis Sonn.) Germplasm Resources. Xiang, X.,Chen, D. M.,Ma, S. P.,Ma, W. C.,Fan, J.,Yang, X. Y.,Liu, M.,Sun, Q. M.. 2014

[18]Antioxidant Activity of Polysaccharide-enriched Fractions Extracted from Pulp Tissue of Litchi Chinensis Sonn.. Kong, Fanli,Zhang, Mingwei,Liao, Sentai,Chi, Jianwei,Wei, Zhencheng,Kong, Fanli,Yu, Shujuan. 2010

[19]Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling. Shu, Bo,Li, Weicai,Liu, Liqin,Wei, Yongzan,Shi, Shengyou. 2016

[20]Enzymatic Browning of Postharvest Litchi: a Review. Wang, J. B.,Wang, X. S.,Jin, Z. Q.. 2010

作者其他论文 更多>>