Different Continuous Cropping Spans Significantly Affect Microbial Community Membership and Structure in a Vanilla-Grown Soil as Revealed by Deep Pyrosequencing

文献类型: 外文期刊

第一作者: Xiong, Wu

作者: Xiong, Wu;Zhao, Jun;Xun, Weibing;Li, Rong;Zhang, Ruifu;Shen, Qirong;Xiong, Wu;Zhao, Qingyun;Wu, Huasong

作者机构:

关键词: Soil bacterial and fungal communities;Continuous cropping;Vanilla;Fusarium wilt;Pyrosequencing

期刊名称:MICROBIAL ECOLOGY ( 影响因子:4.552; 五年影响因子:4.77 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

分类号: Q938

  • 相关文献

[1]Impact of brassicaceous seed meals on the composition of the soil fungal community and the incidence of Fusarium wilt on chili pepper. Ma, Yan,Gentry, Terry,Hu, Ping,Pierson, Elizabeth,Gu, Mengmeng,Yin, Shixue.

[2]Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics. Gu, Fenglin,Chen, Yonggan,Fang, Yiming,Wu, Guiping,Tan, Lehe,Chen, Yonggan,Chen, Yonggan.

[3]Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Ai, Chao,Liang, Guoqing,Sun, Jingwen,Wang, Xiubin,He, Ping,Zhou, Wei,He, Xinhua,He, Ping,He, Xinhua,He, Xinhua.

[4]Effect of fumigation with 1,3-dichloropropene on soil bacterial communities. Liu, Xiumei,Cheng, Xingkai,Wang, Kaiyun,Qiao, Kang,Wang, Hongyan.

[5]Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. Lu, Lu,Wu, Yucheng,Wang, Baozhan,Lin, Xiangui,Zhu, Jianguo,Jia, Zhongjun,Lu, Lu,Han, Wenyan,Zhang, Jinbo,Cai, Zucong.

[6]Transcriptome analysis of the grass carp (Ctenopharyngodon idella) using 454 pyrosequencing methodology for gene and marker discovery. Bai, J. J.. 2015

[7]Duration-Related Variations in Archaeal Communities after a Change from Upland Fields to Paddy Fields. Jiang, Nan,Wei, Kai,Chen, Lijun,Chen, Rui.

[8]Diversity and space-time dynamics of endophytic archaea from sugar beet in the north slope of Tianshan Mountain revealed by 454 pyrosequencing and T-RFLP. Shi, YingWu,TaPa, MuSi,Li, Chun,Yang, HongMei,Zhang, Tao,Gao, Yan,Sun, Jian,Zeng, Jun,Lin, Qing,Cao, ZhenHua,OuTi, KuEr,Li, YuGuo,Lou, Kai,Shi, YingWu,TaPa, MuSi,Li, Chun,Yang, HongMei,Zhang, Tao,Gao, Yan,Sun, Jian,Zeng, Jun,Lin, Qing,Cao, ZhenHua,OuTi, KuEr,Li, YuGuo,Lou, Kai.

[9]Endophytic fungal diversity and space-time dynamics in sugar beet. Shi, YingWu,Li, Chun,Yang, HongMei,Zhang, Tao,Gao, Yan,Zeng, Jun,Lin, Qing,Mahemuti, Outikuer,Li, Yuguo,Huo, Xiangdong,Lou, Kai,Shi, YingWu,Li, Chun,Yang, HongMei,Zhang, Tao,Gao, Yan,Zeng, Jun,Lin, Qing,Mahemuti, Outikuer,Li, Yuguo,Huo, Xiangdong,Lou, Kai.

[10]Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Shi, YingWu,Yang, Hongmei,Zhang, Tao,Sun, Jian,Lou, Kai.

[11]Do the intestinal microbiotas differ between paddlefish (Polyodon spathala) and bighead carp (Aristichthys nobilis) reared in the same pond?. Li, X. M.,Zhu, Y. J.,Yang, D. G.,Yan, Q. Y.,Ringo, E..

[12]Inoculation with Glomus mosseae Improves the Growth and Salvianolic Acid B Accumulation of Continuously Cropped Salvia miltiorrhiza. Chen, Meilan,Yang, Guang,Guo, Lanping,Huang, Luqi,Liu, Dahui,Li, Minhui,Qiu, Hongyan,Chao, Zhi. 2017

[13]Identification and Characterization of 40 Isolated Rehmannia glutinosa MYB Family Genes and Their Expression Profiles in Response to Shading and Continuous Cropping. Wang, Fengqing,Suo, Yanfei,Chen, Xinjian,Zhang, Zhongyi,Wei, He,Li, Mingjie,Zhang, Zhongyi,Xie, Caixia,Wang, Lina. 2015

[14]Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated with Vanilla Fusarium Wilt Disease. Xiong, Wu,Xue, Chao,Xun, Weibing,Zhao, Jun,Li, Rong,Shen, Qirong,Xiong, Wu,Zhao, Qingyun,Wu, Huasong. 2016

[15]Nematode communities in continuous tomato-cropping field soil infested by root-knot nematodes. Shi, L. B.,Wu, H. Y.,Zheng, G. D.,Peng, D. L.. 2012

[16]Analyses of the community compositions of root rot pathogenic fungi in the soybean rhizosphere soil. Cui, Jiaqi,Han, Jie,Cai, Baiyan,Wang, Yu. 2016

[17]Effect of Continuous Cropping on Soil Chemical Properties and Crop Yield in Banana Plantation. Zhong, S.,Guo, G.,Zeng, H.,Jin, Z.,Zhong, S.,Mo, Y.. 2014

[18]Identification and expression analysis of Rehmannia glutinosa mediator complex genes in response to continuous cropping. Wang, Fengqing,Tian, Yunhe,Suo, Yanfei,Huang, Yong,Chen, Xinjian,Tian, Yunhe,Li, Mingjie,Zhang, Zhongyi,Wei, He,Xie, Caixia.

[19]Analysis of bacterial communities in rhizosphere soil of continuously cropped healthy and diseased konjac. Wu, Jinping,Jiao, Zhenbiao,Zhou, Jie,Guo, Fengling,Ding, Zili,Qiu, Zhengming.

[20]Impact of long-term continuous soybean cropping on ammonia oxidizing bacteria communities in the rhizosphere of soybean in Northeast China. Chen, Xueli,Han, Xiaozeng,Chen, Xueli,Wang, Yufeng,Li, Weiqun,Wang, Ying,Wei, Dan,Wang, Xiaojun,Chen, Xueli.

作者其他论文 更多>>