Direct Effects of Elevated CO2 Levels on the Fitness Performance of Asian Corn Borer (Lepidoptera: Crambidae) for Multigenerations

文献类型: 外文期刊

第一作者: Zhao, Lei

作者: Zhao, Lei;Wang, Zhenying;He, Kanglai;Zhao, Lei;Yang, Qunfang

作者机构:

关键词: elevated CO2;Ostrinnia furnacalis;growth;consumption;food digestibility

期刊名称:ENVIRONMENTAL ENTOMOLOGY ( 影响因子:2.377; 五年影响因子:2.298 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Understanding direct response of insects to elevated CO2 should help to elucidate the mechanistic bases of the effects of elevated CO2 on interactions of insects with plants. This should improve our ability to predict shifts in insect population dynamics and community interactions under the conditions of climate change. Effects of elevated CO2 levels on the fitness-related parameters were examined for multigenerations in the Asian corn borer, Ostrinia furnacalis (Guenee). The larvae were allowed to feed on artificial diet, and reared in the closed-dynamic environment chambers with three CO2 levels (ambient, 550 mu l/liter, and 750 mu l/liter) for six generations. In comparison with the ambient CO2 level, mean larval survival rate decreased 9.9% in 750 mu l/liter CO2 level, across O. furnacalis generations, and larval and pupal development times increased 7.5-16.4% and 4.5-13.4%, respectively, in two elevated CO2 levels. Pupal weight was reduced more than 12.2% in 750 mu l/liter CO2 level. Across O. furnacalis generations, mean food consumption per larva increased 2.7, 7.0% and frass excretion per larva increased 14.4, 22.5% in the two elevated CO2 levels, respectively, compared with ambient CO2 level. Elevated CO2 levels resulted in the decline mean across O. furnacalis generations in mean relative growth rate, but increased in relative consumption rate. These results suggested that elevated CO2 would reduce the fitness-related parameters such as higher mortality, lower pupal weight, and longer development times in long term. It also reduced the larval food digestibility and utilizing efficiency; in turn, this would result in increase of food consumption.

分类号: Q96

  • 相关文献

[1]Performance of Microplitis tuberculifer (Hymenoptera: Braconidae) parasitizing Mythimna separata (Lepidoptera: Noctuidae) in different larval instars. Chu, Yanna,Zhang, Jing,Li, Zhen,Wang, Yizhuo,Zhang, Qingwen,Liu, Xiaoxia,Michaud, J. P.,Chen, Han,Li, Jiancheng,Lu, Ziyun. 2014

[2]Combined effects of elevated CO2 and Cd-contaminated soil on the growth, gas exchange, antioxidant defense, and Cd accumulation of poplars and willows. Guo, Baohua,Dai, Songxiang,Wang, Ruigang,Guo, Junkang,Ding, Yongzhen,Xu, Yingming,Wang, Ruigang,Guo, Junkang,Ding, Yongzhen,Xu, Yingming.

[3]Climate change impacts on crop yield and quality with CO2 fertilization in China. Lin, ED,Xiong, W,Ju, H,Xu, YL,Li, Y,Bai, LP,Xie, LY.

[4]Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: Are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate?. Himanen, Sari J.,Nissinen, Anne,Nerg, Anne-Marja,Holopainen, Jarmo K.,Nissinen, Anne,Dong, Wen-Xia,Stewart, C. Neal, Jr.,Poppy, Guy M..

[5]Study on the Production and Consumption of Strawberry in Beijing. Wang, L. N.,Zhang, Y. T.,Zhong, C. F.,Wang, G. X.,Dong, J.,Chang, L. L.. 2014

[6]History and status of the vegetable industry in China. Qu, DY. 2003

[7]Perspectives on livestock production systems in China. Li, X. L.,Yuan, Q. H.,Wan, L. Q.,He, F.. 2008

[8]Medusa consumption and prey selection of silver pomfret Pampus argenteus juveniles. Liu Chunsheng,Zhuang Zhimeng,Chen Siqing,Yan Jingping,Liu Changlin,Shi Zhaohong. 2014

[9]What factors are influencing tea consumption among Chinese urban residents? An empirical study. Chen, Fuqiao,Li, Shujie,Jiang, Renhua,Jiang, Aiqin. 2016

[10]Effects of elevated CO2 on the nutrient compositions and enzymes activities of Nilaparvata lugens nymphs fed on rice plants. Wu Gang,Zhuang Jing,Zhao WanYun,Hua HongXia,Huang WenKun,Su Li,Li JunSheng,Xiao NengWen,Xiong YanFei. 2012

[11]Tomato-Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata. Li, Xin,Sun, Zenghui,Shao, Shujun,Zhang, Shuai,Ahammed, Golam Jalal,Zhang, Guanqun,Jiang, Yuping,Zhou, Jie,Xia, Xiaojian,Zhou, Yanhong,Yu, Jingquan,Shi, Kai,Li, Xin,Jiang, Yuping,Yu, Jingquan,Shi, Kai.

[12]Effects of elevated CO2 on rice grain yield and yield components: Is non-flooded plastic film mulching better than traditional flooding?. Li, Yuting,Han, Xue,Feng, Yongxiang,Lin, Erda,Li, Yingchun,Li, Yuting,Han, Xue,Feng, Yongxiang,Lin, Erda,Li, Yingchun,Lam, Shu Kee,Hao, Xingyu.

[13]Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils. Tian, Qiuying,Zhang, Xinxin,Gao, Yan,Bai, Wenming,Zhang, Wen-Hao,Ge, Feng,Ge, Feng,Zhang, Wen-Hao,Ma, Yibing. 2013

[14]Interactive Effects of Elevated CO2 and Temperature on Rice Planthopper, Nilaparvata lugens. Huang Jian-li,Hu Chao-Xing,Hou Mao-lin. 2014

[15]Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2-induced stomatal movement in tomato. Shi, Kai,Li, Xin,Zhang, Huan,Zhang, Guanqun,Liu, Yaru,Zhou, Yanhong,Xia, Xiaojian,Chen, Zhixiang,Yu, Jingquan,Shi, Kai,Yu, Jingquan,Li, Xin,Chen, Zhixiang.

[16]Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Zhang, Shuai,Li, Xin,Sun, Zenghui,Shao, Shujun,Zhou, Yanhong,Xia, Xiaojian,Yu, Jingquan,Shi, Kai,Li, Xin,Yu, Jingquan,Hu, Lingfei,Ye, Meng.

[17]Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2]. Zhu, Chunwu,Zhu, Jianguo,Jiang, Qian,Liu, Gang,Cao, Jing,Ziska, Lewis H..

[18]Demography and Population Projection of Flea Beetle, Agasicles hygrophila (Coleoptera: Chrysomelidae), Fed on Alligator Weed Under Elevated CO2. Fu, Jian-Wei,Shi, Meng-Zhu,Wang, Ting,Li, Jian-Yu,Zheng, Li-Zhen,Wu, Gang.

[19]Effects of elevated CO2 on the development and physiological metabolic activities of Nilaparvata lugens in response to the infection of Trichoderma asperellum. Zhuang, Jing,Hua, Hong-Xia,Wu, Gang,Su, Li,Wei, Hui,Xiao, Neng-Wen,Li, Jun-Sheng.

[20]Demographic analysis based on the growth parameter of sharks. Chen, PM,Yuan, WW.

作者其他论文 更多>>