PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice

文献类型: 外文期刊

第一作者: Yang, Yaolong

作者: Yang, Yaolong;Xu, Jie;Huang, Lichao;Leng, Yujia;Dai, Liping;Rao, Yuchun;Chen, Long;Wang, Yuqiong;Tu, Zhengjun;Hu, Jiang;Ren, Deyong;Zhang, Guangheng;Zhu, Li;Guo, Longbiao;Qian, Qian;Zeng, Dali;Yang, Yaolong;Xu, Jie

作者机构:

关键词: Chlorophyll b;chlorophyllide a oxygenase;leaf senescence;pale green leaf;rice

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress.

分类号: Q94

  • 相关文献

[1]Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence. Xie, Qingjun,Liang, Yan,Zhang, Jian,Zheng, Huakun,Zuo, Jianru,Xie, Qingjun,Liang, Yan,Zhang, Jian,Zheng, Huakun,Zuo, Jianru,Xie, Qingjun,Zheng, Huakun,Xie, Qingjun,Dong, Guojun,Qian, Qian,Liang, Yan. 2016

[2]Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice. Luan WeiJiang,Shen Ao,Li ZhengLong,Jin ZhiPing,Song SuSheng,Sha AiHua. 2013

[3]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[4]Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Chen, Yizhen,Dong, Hezhong,Chen, Yizhen,Kong, Xiangqiang,Dong, Hezhong,Kong, Xiangqiang,Dong, Hezhong. 2018

[5]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[6]Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Dong, Hezhong,Li, Weijiang,Eneji, A. Egrinya,Zhang, Dongmei,Eneji, A. Egrinya. 2012

[7]Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Dong, Hezhong,Li, Weijiang,Zhang, Dongmei,Dong, Hezhong,Niu, Yuehua. 2008

[8]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[9]Effects of pollination-prevention on leaf senescence and post-silking nitrogen accumulation and remobilization in maize hybrids released in the past four decades in China. Guo, Song,Chen, Fanjun,Yuan, Lixing,Mi, Guohua,Guo, Song.

[10]Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in Gossypium hirsutum L.. Shah, Syed Tariq,Pang, Chaoyou,Hussain, Anwar,Fan, Shuli,Song, Meizhen,Zamir, Roshan,Yu, Shuxun. 2014

[11]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[12]GhNAC12, a neutral candidate gene, leads to early aging in cotton (Gossypium hirsutum L). Fengli Zhao,JianhuiMa,Libei Li,Shuli Fan,Yaning Guo,Meizhen Song,Hengling Wei,Chaoyou Pang,Shuxun Yu. 2016

[13]Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Syed Tariq Shah,Chaoyou Pang,Shuli Fan,Meizhen Song,Saima Arain,Shuxun Yu.

[14]The changes of organelle ultrastructure and Ca2+ homeostasis in maize mesophyll cells during the process of drought-induced leaf senescence. Ma, Yuan-Yuan,Guo, Xiu-Lin,Liu, Zi-Hui,Ma, Yuan-Yuan,Shao, Hong-Bo,Shao, Hong-Bo,Liu, Bin-Hui. 2011

[15]Relationships among hormone changes, transmembrane Ca2+ flux and lipid peroxidation during leaf senescence in spring maize. He, P,Jin, JY. 1999

[16]Deep Roots are Pivotal for Regulating Post-Anthesis Leaf Senescence in Wheat (Triticum aestivum L.). Kong, L.,Si, J.,Sun, M.,Feng, B.,Zhang, B.,Li, S.,Wang, Z.,Wang, F.,Wang, F.. 2013

[17]Molecular cloning and function analysis of the stay green gene in rice. Jiang, Huawu,Li, Meiru,Liang, Naiting,Yan, Hongbo,Wei, Yubo,Xu, Xinlan,Liu, Jian,Xu, Zhifang,Chen, Fan,Wu, Guojiang.

[18]Senescence is delayed when ramie (Boehmeria nivea L.) is transformed with the isopentyl transferase (ipt) gene under control of the SAG12 promoter. An, Xia,Zhang, Jingyu,Liao, Yiwen,Liu, Lijun,Peng, Dingxiang,Wang, Bo,An, Xia. 2017

[19]ES7, encoding a ferredoxin-dependent glutamate synthase, functions in nitrogen metabolism and impacts leaf senescence in rice. Bi, Zhenzhen,Zhang, Yingxin,Wu, Weixun,Zhan, Xiaodeng,Yu, Ning,Xu, Tingting,Liu, Qunen,Li, Zhi,Shen, Xihong,Chen, Daibo,Cheng, Shihua,Cao, Liyong,Bi, Zhenzhen,Zhang, Yingxin,Wu, Weixun,Zhan, Xiaodeng,Yu, Ning,Xu, Tingting,Liu, Qunen,Li, Zhi,Shen, Xihong,Chen, Daibo,Cheng, Shihua,Cao, Liyong.

[20]Nitric oxide production is associated with response to brown planthopper infestation in rice. Liu, Yuqiang,He, Jun,Jiang, Ling,Wu, Han,Xiao, Yuehua,Liu, Yanlin,Li, Guangquan,Du, Yueqiang,Liu, Chenyang,Wan, Jianmin,Wan, Jianmin.

作者其他论文 更多>>