AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana

文献类型: 外文期刊

第一作者: Wang, Feibing

作者: Wang, Feibing;Peng, Rihe;Li, Zhenjun;Yao, Quanhong;Kong, Weili;Wong, Gary;Fu, Lifeng

作者机构:

关键词: Arabidopsis;AtMYB12;Flavonoids;ABA;Proline;Salt and drought tolerance

期刊名称:MOLECULAR GENETICS AND GENOMICS ( 影响因子:3.291; 五年影响因子:3.257 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The AtMYB12 gene from Arabidopsis thaliana has been shown to regulate the expression of key enzyme genes involved in flavonoid biosynthesis, leading to the increased accumulation of flavonoids. In this study, the codon-optimized AtMYB12 gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AtMYB12 was localized to the nucleus. Its overexpression significantly increased accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of AtMYB12 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) biosynthesis, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities, as well as significant reduction of H2O2 and malonaldehyde (MDA) content. The results demonstrate the explicit role of AtMYB12 in conferring salt and drought tolerance by increasing the levels of flavonoids and ABA in transgenic Arabidopsis. The AtMYB12 gene has the potential to be used to enhance tolerance to abiotic stresses in plants.

分类号: Q7

  • 相关文献

[1]A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Wang, Feibing,Li, Zhenjun,Peng, Rihe,Yao, Quanhong,Zhu, Hong,Chen, Dahu.

[2]The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis. Wang, Feibing,Peng, Rihe,Yao, Quanhong,Zhu, Hong,Liu, Qingchang,Kong, Weili.

[3]A novel Cys(2)/His(2) zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Wang, Feibing,Peng, Rihe,Yao, Quanhong,Zhu, Hong,Liu, Qingchang,Tong, Wenjie,Kong, Weili.

[4]Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase. Zhang, Baige,Liu, Kaidong,Zheng, Yan,Wang, Yingxiang,Wang, Jinxiang,Liao, Hong,Zhang, Baige,Liu, Kaidong,Wang, Jinxiang. 2013

[5]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[6]Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis. Bai Ling,Zhou Yun,Zhang XiaoRan,Song ChunPeng,Cao MingQing.

[7]Homologous HAP5 subunit from Picea wilsonii improved tolerance to salt and decreased sensitivity to ABA in transformed Arabidopsis. Li, Lingli,Wei, Jing,Huang, Guixue,Zhang, Dun,Liu, Yong,Zhang, Lingyun,Yu, Yanli.

[8]NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana. Li, Xin,Ahammed, Golam Jalal,Li, Xin,Yu, Jingquan,Shi, Kai. 2015

[9]The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Rong, Wei,Qi, Lin,Ye, Xingguo,Du, Lipu,Liang, Hongxia,Xin, Zhiyong,Zhang, Zengyan,Rong, Wei,Wang, Aiyun.

[10]Reference genes for quantitative real-time PCR analysis and quantitative expression of P5CS in Agropyron mongolicum under drought stress. Tian Qing-song,Du Jian-cai,Han Bing,Wang Shu-yan,Wu Zhi-juan,Li Xiao-quan,Han Bing. 2016

[11]Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Chen, Jianlin,Wu, Xuexia,Zhu, Zongwen,Xu, Shuang,Zha, Dingshi,Wu, Xuexia,Zhu, Zongwen,Xu, Shuang,Zha, Dingshi,Yao, Xinfeng. 2016

[12]5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Xiong, Jun-Lan,Wang, Hang-Chao,Tan, Xiao-Yu,Zhang, Chun-Lei,Zhang, Chun-Lei,Naeem, Muhammad Shahbaz. 2018

[13]Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Mo, Zhaowen,Pan, Shenggang,Xiao, Feng,Tang, Yongjian,Wang, Yilei,Duan, Meiyang,Tian, Hua,Tang, Xiangru,Mo, Zhaowen,Pan, Shenggang,Duan, Meiyang,Tian, Hua,Tang, Xiangru,Li, Wu,Fitzgerald, Timothy L.. 2015

[14]Effect of Salt Stress on Growth and Physiology in Melia azedarach Seedlings of Six Provenances. Xu, Liping,Xu, Liping,Zhang, Zihan,Yu, Fangyuan,Guo, Jie,Liu, Jianbin,Yue, Haiwang. 2018

[15]Melatonin alleviates cold-induced oxidative damage by regulation of ascorbate-glutathione and proline metabolism in melon seedlings (Cucumis melo L.). Zhang, Y. P.,Chen, Y. Y.,Zhang, Y. P.,Xu, S.,Yang, S. J.,Chen, Y. Y..

[16]Over-expressing Salicornia europaea (SeNHX1) gene in tobacco improves tolerance to salt. Yang, Xiaoling,Ji, Jing,Wang, Gang,Yang, Shaohui,Yang, Xiaoling,Zhao, Qing,Josine, Tchouopou Lontchi,Yang, Xiaoling,Yang, Xiaoling,Ji, Jing,Wang, Gang,Yang, Shaohui. 2011

[17]Exogenous Nitric Oxide Pretreatment Enhances Chilling Tolerance of Anthurium. Liang, Lijian,Deng, Yanming,Sun, Xiaobo,Jia, Xinping,Su, Jiale. 2018

[18]Host diapause status and host diets augmented with cryoprotectants enhance cold hardiness in the parasitoid Nasonia vitripennis. Li, Yuyan,Zhang, Lisheng,Chen, Hongyin,Li, Yuyan,Zhang, Lisheng,Chen, Hongyin,Li, Yuyan,Zhang, Qirui,Denlinger, David L.,Li, Yuyan,Zhang, Qirui,Denlinger, David L.,Li, Yuyan,Zhang, Qirui,Denlinger, David L..

[19]Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars. Islam, Faisal,Ali, Basharat,Wang, Jian,Farooq, Muhammad A.,Gill, Rafaqat A.,Zhou, Weijun,Islam, Faisal,Ali, Basharat,Wang, Jian,Farooq, Muhammad A.,Gill, Rafaqat A.,Zhou, Weijun,Ali, Shafaqat,Wang, Danying.

[20]Physiological and Genetic Properties of Tomato Fruits from 2 Cultivars Differing in Chilling Tolerance at Cold Storage. Zhao, D. Y.,Shen, L.,Yu, M. M.,Zheng, Y.,Ding, Y.,Sheng, J. P.,Shen, L.,Fan, B.,Liu, K. L..

作者其他论文 更多>>