Comparative expression analysis of Calcineurin B-like family gene CBL10A between salt-tolerant and salt-sensitive cultivars in B-oleracea

文献类型: 外文期刊

第一作者: Xu, Ling

作者: Xu, Ling;Zhang, Dayong;Xu, Zhaolong;Huang, Yihong;He, Xiaolan;Wang, Jinyan;Shao, Hongbo;Li, Jianbin;Gu, Minfeng

作者机构:

关键词: Brassica oleracea L;BoCBL10A;Salt-soil agriculture;Salt stress;Sequence and expression difference

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Calcineurin B-like proteins (CBLs) are plant calcium sensors that play a critical role in the regulation of plant growth and response to stress. Many CBLs have been identified in the calcium signaling pathway in both Arabidopsis and rice. However, information about BoCBLs genes from Brassica oleracea has not been reported. In the present study, we identified 13 candidate CBL genes in the B. oleracea genome based on the conserved domain of the Calcineurin B-like family, and we carried out a phylogenetic analysis of CBLs among Arabidopsis, rice, maize, cabbage and B. oleracea. For B. oleracea, the distribution of the predicted BoCBL genes was uneven among the five chromosomes. Sequence analysis showed that the nucleotide sequences and corresponding protein structure of BoCBLs were highly conserved, i.e., all of the putative BoCBLs contained 6-8 introns, and most of the exons of those genes contained the same number of nucleotides and had high sequence identities. All BoCBLs consisted of four EF-Hand functional domains, and the distance between the EF-hand motifs was conserved. Evolutionary analysis revealed that the CBLs were classified into two subgroups. Additionally, the CBL10A gene was cloned from salt-tolerant (CB6) and salt-sensitive (CB3) cultivars using RT-PCR. The results indicated that the cloned gene had a substantial difference in length (741 by in CB3 and 829 by in CB6) between these two cultivars. The deduced CBL10A protein in CB6 had four EF-hand structural domains, which have an irreplaceable role in calcium-binding and have calcineurin A subunit binding sites, while the BoCBL10A protein in CB3 had only two EF-hand structural domains and lacked calcineurin A subunit binding sites. The expression level of the BoCBL10A gene between salt tolerance (CB6)and sensitive varieties(CB3) under salt stress was significantly different (P < 0.01 and P < 0.05). The expression of BoCBL10A gene was relatively higher in salt-tolerant (CB6) cultivar under salt stress, with a longer period of up-regulation expression and a shorter time responding to salt, compared with the salt-sensitive (CB3) cultivar. We speculate that these differences in the coding region of BoCBL10A may lead to the different salt responses between these two cultivars. (C) 2016 Published by Elsevier B.V.

分类号: X1

  • 相关文献

[1]Karyotyping of Brassica oleracea L. based on cot-1 and ribosomal DNAs. Wei, Wen-Hui,Zhang, Su-Feng,Wang, Li-Jun,Chen, Bo,Wu, Xiao-Ming,Song, Yun-Chun. 2007

[2]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

[3]Cloning of the full-length cDNA of the wheat involved in salt stress: Root hair defective 3 gene (RHD3). Shan, L,Zhao, SY,Xia, GM. 2005

[4]Molecular cloning and expression analysis of FvMYB1 from Fraxinus velutina Torr.. Li, Tian,Bi, Yu-Ping,Li, Tian,Peng, Zhen-Ying,Bi, Yu-Ping,Fan, Zhong-Xue,Li, Tian,Peng, Zhen-Ying,Bi, Yu-Ping,Fan, Zhong-Xue,Li, Tian. 2013

[5]The K+/H+ Antiporter AhNHX1 Improved Tobacco Tolerance to NaCl Stress by Enhancing K+ Retention. Zhang, Wei-Wei,Meng, Jing-Jing,Yang, Sha,Guo, Feng,Li, Xin-Guo,Xing, Jin-Yi,Wan, Shu-Bo. 2017

[6]Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. Zhang, Quan,Sun, Wei,Liu, Yan,Wang, Xingjun,Zhao, Yanxiu,Zhao, Chuanzhi,Li, Ming,Xia, Han,Sun, Mingnan,Li, Aiqin,Li, Changsheng,Zhao, Shuzhen,Hou, Lei,Picimbon, Jean-Francois,Wang, Xingjun. 2013

[7]A R2R3 MYB transcription factor from ash positively regulates salt response in tobacco. Li, Tian,Sun, Jingkuan,Li, Tian,Bi, Yuping. 2017

[8]Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut. Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Sui, Na,Liu, Shanshan,Duan, Guangyou. 2018

[9]Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean. Song, Hui,Wang, Pengfei,Hou, Lei,Zhao, Shuzhen,Zhao, Chuanzhi,Xia, Han,Li, Pengcheng,Zhang, Ye,Bian, Xiaotong,Wang, Xingjun. 2016

[10]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[11]Study on DNA Cytosine Methylation of Cotton (Gossypium hirsutum L.) Genome and Its Implication for Salt Tolerance. ZHAO Yun-lei,YU Shu-xun,YE Wu-wei,WANG Hong-mei,WANG Jun-juan,FANG Bao-xing. 2010

[12]Epigenetic mechanisms of salt tolerance and heterosis in Upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis. Baohua Wang,Mi Zhang,Rong Fu,Xiaowei Qian,Ping Rong,Yan Zhang,Peng Jiang,Junjuan Wang,Xuke Lu,Delong Wang,Wuwei Ye,Xinyu Zhu.

[13]Analysis of methylation-sensitive amplified polymorphism in different cotton accessions under salt stress based on capillary electrophoresis. Baohua Wang,Rong Fu,Mi Zhang,Zhenqian Ding,Lei Chang,Xinyu Zhu,Yafeng Wang,Baoxiang Fan,Wuwei Ye,Youlu Yuan.

[14]Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars. Ning Wang,Wenqing Qiao,Huang, Qun,Yan, Gentu,Xiaohong Liu,Jianbin Shi,Qinghua Xu,Hong Zhou,Gentu Yan,Qun Huang. 2017

[15]An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Pan, Yu,Hu, Zongli,Chen, Guoping,Pan, Yu,Seymour, Graham B.,Lu, Chungui,Chen, Xuqing. 2012

[16]Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Wang, Hongyan,Tang, Xiaoli,Shao, Hong-Bo,Wang, Hongyan,Wang, Honglei,Wang, Hongyan,Tang, Xiaoli,Shao, Hong-Bo. 2015

[17]Factors Affecting Buffalobur (Solanum rostratum) Seed Germination and Seedling Emergence. Zhang, Chaoxian,Li, Xiangju,Cui, Hailan,Huang, Hongjuan,Sui, Biaofeng,Meng, Qinghui,Zhang, Hongjun. 2009

[18]Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. Liu, Qiaohong,Liu, Zhibin,Yang, Hao,Wang, Jianmei,Li, Xufeng,Yang, Yi,Yang, Liang. 2016

[19]Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Sun, Xiaochuan,Wang, Yan,Xu, Liang,Li, Chao,Zhang, Wei,Luo, Xiaobo,Jiang, Haiyan,Liu, Liwang,Sun, Xiaochuan,Sun, Xiaochuan,Wang, Yan,Xu, Liang,Luo, Xiaobo,Liu, Liwang. 2017

[20]Physiological Mechanism of Enhancing Salt Stress Tolerance of Perennial Ryegrass by 24-Epibrassinolide. Wu, Wenli,Zhang, Qiang,Yang, Zhiping,Ervin, Erik. H.,Zhang, Xunzhong. 2017

作者其他论文 更多>>