A putative 12-oxophytodienoate reductase gene CsOPR3 from Camellia sinensis, is involved in wound and herbivore infestation responses

文献类型: 外文期刊

第一作者: Xin, Zhaojun

作者: Xin, Zhaojun;Zhang, Jin;Ge, Lingang;Lei, Shu;Han, Juanjuan;Zhang, Xin;Li, Xiwang;Sun, Xiaoling

作者机构:

关键词: 12-Oxophytodienoate reductase;Jasmonic acid;Wounding;Herbivore infestation;Tea

期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: 12-Oxophytodienoate reductase (OPR) is a key enzyme in the biosynthesis of jasmonic acid (JA), which plays an important role in plant defense responses. Although multiple isoforms of OPRs have been identified in various annual herbaceous plants, genes encoding these enzymes in perennial woody plants have yet to be fully investigated. In the tea plant, Camellia sinensis (L), no OPR genes have been isolated, and their possible roles in tea plant development and defense mechanism remain unknown. In this study, a putative OPR gene, designated as CsOPR3, was isolated from tea plants for the first time through the rapid amplification of cDNA ends. The open reading frame of CsOPR3 is 1197 bp in length, and encodes a protein of 398 amino acids. Real-time qPCR analysis revealed that CsOPR3 was expressed in different organs. In particular, CsOPR3 was highly expressed in flowers, leaves and stems but was weakly expressed in roots and seeds. CsOPR3 expression could be rapidly induced by mechanical wounding, and increased JA levels were correlated with the wound-induced CsOPR3 expression. The infestation of the tea geometrid (TG) Ectropis obliqua Front, regurgitant derived from TG and exogenous JA application could enhance the CsOPR3 expression. Our study is the first to report that CsOPR3 plays an important role in JA biosynthesis and tea plant defense against herbivorous insects. (C) 2017 Elsevier B.V. All rights reserved.

分类号: R394

  • 相关文献

[1]Application of chemical elicitor (Z)-3-hexenol enhances direct and indirect plant defenses against tea geometrid Ectropis obliqua. Xin, Zhaojun,Li, Xiwang,Chen, Zongmao,Sun, Xiaoling,Xin, Zhaojun,Li, Xiwang,Chen, Zongmao,Sun, Xiaoling,Li, Jiancai.

[2]Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indirect defense against the tea geometrid Ectropis obliqua. Xin, Zhaojun,Zhang, Zhengqun,Chen, Zongmao,Sun, Xiaoling,Xin, Zhaojun,Chen, Zongmao,Sun, Xiaoling.

[3]Expression profiling of HbWRKY1, an ethephon-induced WRKY gene in latex from Hevea brasiliensis in responding to wounding and drought. Zhang, Quanqi,Zhu, Jiahong,Ni, Yanmei,Cai, Yuanbao,Zhang, Zhili,Zhang, Quanqi,Ni, Yanmei,Zhang, Zhili. 2012

[4]Activation of three pathogen-inducible promoters in transgenic citrus (Citrus sinensis Osbeck) after Xanthomonas axonopodis pv. citri infection and wounding. Zou, Xiuping,Song, Erling,Peng, Aihong,He, Yongrui,Xu, Lanzhen,Lei, Tiangang,Yao, Lixiao,Chen, Shanchun,Zou, Xiuping,Peng, Aihong,He, Yongrui,Xu, Lanzhen,Lei, Tiangang,Yao, Lixiao,Chen, Shanchun.

[5]Effects of girdling on arbuscular mycorrhizal colonization and root hair development of litchi seedlings. Shu, Bo,Li, Weicai,Liu, Liqin,Wei, Yongzan,Shi, Shengyou.

[6]The role of jasmonic acid and lipoxygenase in propylene-induced chilling tolerance on banana fruit. Liao, Fen,Cui, Sufen,Zhang, Ezhen,Huang, Maokang,He, Quanguang,Hong, Keqian,Zou, Ru. 2014

[7]OPEN GLUME1: a key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice. Li, Xiaohui,Wang, Yihua,Duan, Erchao,Zhou, Kunneng,Lin, Qiuyun,Wang, Di,Wang, Yunlong,Long, Wuhua,Zhao, Zhigang,Jiang, Ling,Wang, Chunming,Wan, Jianmin,Cheng, Zhijun,Lei, Cailin,Zhang, Xin,Guo, Xiuping,Wang, Jiulin,Wu, Chuanyin,Wan, Jianmin,Qi, Qi. 2018

[8]TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Lin, Ruiming,Feng, Jing,Chen, Wanquan,Qiu, Dewen,Xu, Shichang. 2015

[9]Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. Pirrello, Julien,Leclercq, Julie,Dessailly, Florence,Rio, Maryannick,Piyatrakul, Piyanuch,Montoro, Pascal,Piyatrakul, Piyanuch,Kuswanhadi, Kuswanhadi,Tang, Chaorong. 2014

[10]Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. Zhang, Chao,Ding, Zuomei,Wu, Kangcheng,Yang, Liang,Li, Yang,Yang, Zhen,Shi, Shan,Liu, Xiaojuan,Zheng, Luping,Wei, Juan,Du, Zhenguo,Wu, Zujian,Wu, Jianguo,Zhao, Shanshan,Yang, Zhirui,Wang, Yu,Li, Yi,Wu, Jianguo,Zhang, Aihong,Miao, Hongqin. 2016

[11]Elevated O-3 and TYLCV Infection Reduce the Suitability of Tomato as a Host for the Whitefly Bemisia tabaci. Cui, Hongying,Zhang, Youjun,Cui, Hongying,Sun, Yucheng,Ge, Feng,Chen, Fajun. 2016

[12]Effect of Jasmonic Acid to Resistance against Fusarium in Lily. Zhang, Y. P.,Cui, G. F.,Wu, L. F.,Wang, J. H.,Tang, D. S.,Lee, I. J.. 2011

[13]Transgenic expression of a sorghum gene (SbLRR2) encoding a simple extracellular leucine-rich protein enhances resistance against necrotrophic pathogens in Arabidopsis. Zhu, Fu-Yuan,Lo, Clive,Zhu, Fu-Yuan,Zhang, Jianhua,Zhu, Fu-Yuan,Zhang, Jianhua,Li, Lei.

[14]Laticifer differentiation in Hevea brasiliensis: Induction by exogenous jasmonic acid and linolenic acid. Hao, BZ,Wu, JL. 2000

[15]Regurgitant Derived From the Tea Geometrid Ectropis obliqua Suppresses Wound-Induced Polyphenol Oxidases Activity in Tea Plants. Yang, Zi-Wei,Duan, Xiao-Na,Jin, Shan,Li, Xi-Wang,Chen, Zong-Mao,Sun, Xiao-Ling,Duan, Xiao-Na,Ren, Bing-Zhong.

[16]TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice. Geng, Shuaifeng,Wei, Yuming,Zheng, Youliang,Lan, Xiujin,Geng, Shuaifeng,Li, Aili,Tang, Lichuan,Yin, Lingjie,Wu, Liang,Lei, Cailin,Guo, Xiuping,Zhang, Xin,Mao, Long,Jiang, Guanghuai,Zhai, Wenxue.

[17]Effect of Localized Scorch on the Transport and Distribution of Exogenous Jasmonic Acid in Vicia faba. Liu, X,Zhang, SQ,Lou, CH,Yu, FY.

[18]Jasmonic acid and methyl dihydrojasmonate enhance saponin biosynthesis as well as expression of functional genes in adventitious roots of Panax notoginseng FH Chen. Li, Jinxin,Wang, Juan,Li, Jing,Gao, Wenyuan,Wu, Xiaolei,Liu, Dahui,Li, Jianli,Liu, Shujie.

[19]A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Cao, Sen,Zhao, Ping-Ping,Jia, Shu-Dan,Zhang, Zhong-Wei,Yuan, Shu,Shang, Jing,Xu, Fei,Wang, Shao-Dong,Xu, Mo-Yun,Wang, Jian-Hui,Lin, Hong-Hui,Wang, Jian-Hui.

[20]The response of marigold (Tagetes erecta Linn.) to ozone: impacts on plant growth and leaf physiology. Yang, Ning,Wang, Xiaoke,Zheng, Feixiang,Chen, Yuanyuan,Yang, Ning,Chen, Yuanyuan,Zheng, Feixiang.

作者其他论文 更多>>