Silicon fertilization modulates 2-acetyl-1-pyrroline content, yield formation and grain quality of aromatic rice

文献类型: 外文期刊

第一作者: Mo, Zhaowen

作者: Mo, Zhaowen;Lei, Shun;Ashraf, Umair;Li, Yuan;Pan, Shenggang;Duan, Meiyang;Tian, Hua;Tang, Xiangru;Mo, Zhaowen;Lei, Shun;Ashraf, Umair;Pan, Shenggang;Duan, Meiyang;Tian, Hua;Tang, Xiangru;Khan, Imran

作者机构:

关键词: Fragrant rice;Growth;Praline;2-Acetyl-1-pyrroline;Silicon;Yield

期刊名称:JOURNAL OF CEREAL SCIENCE ( 影响因子:3.616; 五年影响因子:3.891 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Present study aimed to assess silicon (Si) mediated yield, grain quality and regulations in 2-acetyl-1-pyrroline accumulation (2-AP) in aromatic rice. Four different levels of Si at 15, 30, 45 and 60 mg kg(-1) were applied to two aromatic rice cultivars i.e., Nongxiang 18 and Meixiangzhan 2, while pots without Si were served as control (CK). Results revealed that Si fertilization improved 2-AP, Si and proline contents in leaves and grains as well as activities of proline dehydrogenase (PRODH) and net photosynthetic rates (Pn) (in leaves) while interfered with total N contents in leaves and grains. Moreover, leaves N and proline contents, and net photosynthetic rates (Pn) were decreased with plant age i.e., tillering > flowering > maturity while PRODH activities and Si contents were highest at flowering and maturity stages, respectively and minimum at tillering stage. Furthermore, growth, yield and quality components were also improved by Si application but results were not consistent regarding grain quality for both rice cultivars. Further, Si contents in leaves have significant positive relations (r = 0.3974, P < 0.05) with grain 2-AP contents at flowering stage. Hence, Si proved better for both rice cultivars whereas 2-AP contents were higher for Meixiangzhan 2 than Nongxiang 18. (C) 2017 Elsevier Ltd. All rights reserved.

分类号: S4

  • 相关文献

[1]Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice. Li, Meijuan,Li, Meijuan,Ashraf, Umair,Tian, Hua,Mo, Zhaowen,Pan, Shenggang,Duan, Meiyang,Tang, Xiangru,Li, Meijuan,Ashraf, Umair,Tian, Hua,Mo, Zhaowen,Pan, Shenggang,Duan, Meiyang,Tang, Xiangru,Anjum, Shakeel Ahmad.

[2]Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Mo, Zhaowen,Pan, Shenggang,Xiao, Feng,Tang, Yongjian,Wang, Yilei,Duan, Meiyang,Tian, Hua,Tang, Xiangru,Mo, Zhaowen,Pan, Shenggang,Duan, Meiyang,Tian, Hua,Tang, Xiangru,Li, Wu,Fitzgerald, Timothy L.. 2015

[3]Response of Sugarcane to Calcium Silicate on Yield, Gas Exchange Characteristics, Leaf Nutrient Concentrations, and Soil Properties in Two Different Soils. Li, Yang-Rui,Huang, Hai-Rong. 2012

[4]LOCAL CLIMATE AFFECTS GROWTH AND GRAIN PRODUCTIVITY OF PRECISION HILL-DIRECT-SEEDED RICE IN SOUTH CHINA. Mo, Z. W.,Pan, S. G.,Ashraf, U.,Kanu, A. S.,Duan, M. Y.,Tian, H.,Tang, X. R.,Mo, Z. W.,Pan, S. G.,Duan, M. Y.,Tian, H.,Tang, X. R.,Li, W.,Wang, Z. M.,Kargbo, M. B.. 2017

[5]MAIZE GROWTH, YIELD FORMATION AND WATER-NITROGEN USAGE IN RESPONSE TO VARIED IRRIGATION AND NITROGEN SUPPLY UNDER SEMI-ARID CLIMATE. Ashraf, Umair,Pan, Shenggang,Tang, Xiangru,Ashraf, Umair,Pan, Shenggang,Tang, Xiangru,Salim, Mazhar Noor,Sher, Alam,Khan, Aqil,Sabir, Sabeeh-ur-Rasool. 2016

[6]Lead-induced changes in plant morphology, cell ultrastructure, growth and yields of tomato. Zhao, Shouping,Ye, Xuzhu,Zheng, Jici. 2011

[7]Spatial explorations of land use change and grain production in China. Verburg, PH,Chen, YQ,Veldkamp, TA.

[8]Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Chen, Mingliang,Wei, Xiangjin,Shao, Gaoneng,Tang, Shaoqing,Luo, Ju,Hu, Peisong,Chen, Mingliang. 2012

[9]Application of silicon fertilizer affects nutritional quality of rice. Liu, Qihua,Zhou, Xuebiao,Sun, Zhaowen. 2017

[10]Importance of plant species and external silicon concentration to active silicon uptake and transport. Liang, Yongchao,Hua, Haixia,Zhu, Yong-Guan,Zhang, Jie,Cheng, Chunmei,Roemheld, Volker. 2006

[11]Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Liang, YC,Zhang, WH,Chen, Q,Ding, RX. 2005

[12]Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Liang, Yongchao,Zhang, Wenhua,Chen, Qin,Liu, Youliang,Ding, Ruixing. 2006

[13]Role of Silicon in Alleviating Salt-Induced Toxicity in White Clover. Guo, Qiang,Meng, Lin,Mao, Peichun,Tian, Xiaoxia. 2013

[14]Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Li, Ping,Song, Alin,Li, Zhaojun,Fan, Fenliang,Liang, Yongchao,Li, Ping.

[15]Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Li, Ping,Song, Alin,Li, Zhaojun,Fan, Fenliang,Liang, Yongchao,Li, Ping,Liang, Yongchao.

[16]Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Liang, Yongchao,Sun, Wanchun,Zhu, Yong-Guan,Christie, Peter.

[17]The effects of silicon fertilizer on denitrification potential and associated genes abundance in paddy soil. Song, Alin,Fan, Fenliang,Yin, Chang,Wen, Shilin,Zhang, Yalei,Fan, Xiaoping,Liang, Yongchao.

[18]Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. Pavlovic, Jelena,Maksimovic, Vuk,Stevic, Nenad,Nikolic, Miroslav,Samardzic, Jelena,Timotijevic, Gordana,Laursen, Kristian H.,Hansen, Thomas H.,Husted, Soren,Schjoerring, Jan K.,Liang, Yongchao.

[19]Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Song, Alin,Zhang, Jie,Liang, Yongchao,Li, Zhaojun,Xue, Gaofeng,Fan, Fenliang,Liang, Yongchao,Liang, Yongchao.

[20]In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Ning, Dongfeng,Duan, Aiwang,Liu, Zhandong,Liang, Yongchao,Song, Alin.

作者其他论文 更多>>