Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery

文献类型: 外文期刊

第一作者: Wang, Yu

作者: Wang, Yu;Wang, Jing;Ding, Zhao-tang;Fan, Kai;Wang, Hui;Bi, Cai-hong;Zhang, Yun-wei;Sun, Hai-wei

作者机构:

关键词: Camellia sinensis L.;Drought stress;iTRAQ Proteomics;Chlorophyll a/b-binding proteins;Sulfur-containing compounds

期刊名称:JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:3.549; 五年影响因子:4.164 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Drought is a crucial limiting factor for tea yield and quality. To systematically characterize the molecular response of tea plants to drought stress and its capacity to recover, we used iTRAQ-based comparative proteomic approach to investigate the effects of drought on protein expression profiles in tea seedlings subjected to different drought treatments. A total of 3274 proteins were identified, of which 2169 and 2300 showed differential expressions during drought and recovery, respectively. Functional annotation showed that multiple biological processes were regulated, suggesting that tea plants probably employed multiple and synergistic resistance mechanisms in dealing with drought stress. Hierarchical clustering showed that chlorophyll a/b-binding proteins were up-regulated in DB and RE, suggesting that tea plants might regulate expression of chlorophyll a/b-binding proteins to maintain the photosystem II function during drought stress. Abundant proteins involved in sulfur-containing metabolite pathways, such as glutathione, taurine, hypotaurine, methionine, and cysteine, changed significantly during drought stress. Among them, TL29 interacted with LHCb6 to connect S-containing metabolites with chlorophyll a/b-binding proteins. This suggests that sulfur-containing compounds play important roles in the response to drought stress in tea plants. In addition, the expression of PAL was up-regulated in DA and down-regulated in DB. Cinnamyl alcohol dehydrogenase, caffeic acid O-methyltransferase, and 4-coumarate-CoA ligase also showed significant changes in expression levels, which regulated the biosynthesis of polyphenols. The results indicate that slight drought stress might promote polyphenol biosynthesis, while serious drought stress leads to inhibition. The expression of lipoxygenase and short-chain dehydrogenase increased during slight drought stress and some volatile metabolite pathways were enriched, indicating that drought stress might affect the tea aroma. The study provides valuable information that will lay the foundation for studies investigating the functions of drought response genes in tea leaves.

分类号: Q94

  • 相关文献

[1]ACCUMULATION OF FLUORIDE AND ALUMINIUM RELATED TO DIFFERENT VARIETIES OF TEA PLANT. Ruan, JY,Wong, MH.

[2]Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L.. Ruan, JY,Zhang, FS,Wong, MH. 2000

[3]Metabolite profiling of tea (Camellia sinensis L.) leaves in winter. Shen, Jiazhi,Wang, Yu,Ding, Zhaotang,Hu, Jianhui,Zheng, Chao,Li, Yuchen,Chen, Changsong,Shen, Jiazhi,Wang, Yu,Ding, Zhaotang,Hu, Jianhui,Zheng, Chao,Li, Yuchen.

[4]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[5]Single-base resolution methylomes of upland cotton (Gossypium hirsutum L.) reveal epigenome modifications in response to drought stress. Xuke Lu,Ye, Wuwei,Xiaoge Wang,Xiugui Chen,Na Shu,Junjuan Wang,Delong Wang,Shuai Wang,Weili Fan,Lixue Guo,Xiaoning Guo,Wuwei Ye. 2017

[6]An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Pan, Yu,Hu, Zongli,Chen, Guoping,Pan, Yu,Seymour, Graham B.,Lu, Chungui,Chen, Xuqing. 2012

[7]Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide. Chen, Zhang,Wang, Ruixin,Han, Pengyuan,Sun, Hailong,Sun, Haifeng,Li, Chengjun,Yang, Lixia. 2018

[8]Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. Liu, Qiaohong,Liu, Zhibin,Yang, Hao,Wang, Jianmei,Li, Xufeng,Yang, Yi,Yang, Liang. 2016

[9]Reference genes for quantitative real-time PCR analysis and quantitative expression of P5CS in Agropyron mongolicum under drought stress. Tian Qing-song,Du Jian-cai,Han Bing,Wang Shu-yan,Wu Zhi-juan,Li Xiao-quan,Han Bing. 2016

[10]Exogenously Applied Nitric Oxide Enhances the Drought Tolerance in Hulless Barley. Zhong, Yan,Wu, Xiaoli. 2015

[11]RdreB1BI enhances drought tolerance by activating AQP-related genes in transgenic strawberry. Gu, Xianbin,Gao, Zhihong,Yan, Yichao,Qiao, Yushan,Gu, Xianbin,Chen, Yahua,Wang, Xiuyun,Gu, Xianbin. 2017

[12]Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Jin, Rong,Kim, Beg Hab,Ji, Chang Yoon,Kim, Ho Soo,Kwak, Sang-Soo,Jin, Rong,Ji, Chang Yoon,Kwak, Sang-Soo,Jin, Rong,Kim, Ho Soo,Ma, Dai Fu. 2017

[13]Effects of Exogenous Chitosan on Physiological Characteristics of Potato Seedlings Under Drought Stress and Rehydration. Jiao, Zhili,Li, Yong,Lu, Dianqiu,Li, Juanjuan,Xu, Xiaoyan,Wang, Jingying,Li, Hui. 2012

[14]VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Liu, Guanshan,Chen, Jia,Wang, Xuechen. 2006

[15]ATP-Citrate Lyase Gene (SoACLA-1), a Novel ACLA Gene in Sugarcane, and Its Overexpression Enhance Drought Tolerance of Transgenic Tobacco. Li, Jian,Sun, Bo,Liu, Jia-Yi,Zhao, Wen-Hui,Huang, Chan,Yang, Li-Tao,Li, Yang-Rui,Yang, Li-Tao,Li, Yang-Rui. 2017

[16]The NAC-like transcription factor. SINAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. Xie Li-na,Min Dong-hong,Feng Lu,Xu Dong-bei,Chen Ming,Xu Zhao-shi,Zhou Yong-bin,Li Lian-cheng,Ma You-zhi,Zhang Xiao-hong. 2017

[17]Morphological and physiological responses of Heteropogon contortus to drought stress in a dry-hot valley. Wang, Xue-mei,Yan, Bang-guo,Liu, Gang-cai,Wang, Xue-mei,Yan, Bang-guo,Zhao, Li,Shi, Liang-tao,He, Yu-xiao. 2016

[18]Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Min, Haowei,Chen, Chengxuan,Wei, Shaowei,Shang, Xiaoling,Sun, Meiyun,Xia, Ran,Chen, Huabang,Xie, Qi,Min, Haowei,Chen, Chengxuan,Wei, Shaowei,Shang, Xiaoling,Sun, Meiyun,Xia, Ran,Chen, Huabang,Xie, Qi,Liu, Xiangguo,Hao, Dongyun. 2016

[19]Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Yu, Xiaqing,Wu, Zhen,Ottosen, Carl-Otto,Rosenqvist, Eva. 2017

[20]Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis. Cheng, Han,Chen, Xiang,Zhu, Jianshun,Huang, Huasun. 2016

作者其他论文 更多>>