Improvement of resistance to Fusarium head blight by recurrent selection in an intermating breeding spring wheat population using the dominant male-sterile gene ms(2)

文献类型: 外文期刊

第一作者: Yang, ZP

作者: Yang, ZP;Yang, XY;Huang, DC

作者机构:

关键词: Fusarium head blight;intermating breedingpopulation;male-sterile gene ms(2);recurrent selection;resistance;Triticum aestivum L.;wheat

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN: 0014-2336

年卷期: 2000 年 112 卷 1 期

页码:

收录情况: SCI

摘要: Four cycles of recurrent selection for FHB resistance were conducted in an intermating wheat breeding population using the dominant male-sterile gene ms(2) during 1987-1991. Five cycles of phenotypic mass selection for male-sterile plants were evaluated using the soil-surface inoculation method in Experiment I. Experiment II evaluated changes in FHB scores during five cycles of progeny selection for fertile plants using the single-floret inoculation method. In Experiment I, the average level of FHB response increased to MR level in C-4, compared to MS level in C-0. The numbers of infected spikelets and diseased kernels decreased 0.32 and 2.68 per cycle, respectively. In Experiment II, the average level of FHB response increased to R level in C4F1. The numbers of infected spikelets and diseased kernels decreased 0.93 and 4.58 per cycle, respectively. In both experiments, the largest selection gains were realized in the first cycle. The frequencies of R and MR individuals were increased significantly. The frequencies of individuals with FHB response equal and/or superior to Sumai 3 were increased to 5-8% in C-4 and 25% in C4F1 after the fourth cycle. Agronomic traits tended to be slightly improved in selected populations. Compared to 2% in C-0, about 34% of lines superior in both FHB resistance and agronomic traits in C4F1 were selected to enter the conventional breeding program for further evaluation. Sixty three semidwarf lines superior in both FHB resistance and yield potential were selected from the F-5 generations derived from C1F1 to C4F1. From them, two resistant cultivars with high-yielding potential were developed and commercialized in the Lower Yangtze Valley. Recurrent selection appears to be highly effective and feasible in shifting the average FHB response of the intermating population in the desirable direction, thereby enhancing the frequency of resistant individuals.

分类号:

  • 相关文献

[1]Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Li, Zhao,Xu, Huijun,Du, Lipu,Zhang, Zengyan,Zhou, Miaoping.

[2]Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. Xiao, Jin,Jin, Xiahong,Jia, Xinping,Wang, Haiyan,Cao, Aizhong,Pei, Haiyan,Xue, Zhaokun,He, Liqiang,Chen, Qiguang,Wang, Xiue,Jia, Xinping,Zhao, Weiping. 2013

[3]MOLECULAR BREEDING FOR WHEAT FUSARIUM HEAD BLIGHT RESISTANCE IN CHINA. M, Hongxiang,Yao, Jinbao,Zhou, Miaoping,Zhang, Xu,Ren, Lijuan,Yu, Giuhong,Lu, Weizhong.

[4]Resistance against Fusarium Head Blight in Transgenic Wheat Plants Expressing the ScNPR1 gene. Yu, Guihong,Zhang, Xu,Yao, Jingbao,Zhou, MiaoPing,Ma, Hongxiang.

[5]Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum. Ding, Lina,Cao, Jun,Zhou, Yang,Yang, Ruiying,Yang, Guoxing,Li, Peng.

[6]Allelopathic effects of aerial parts of Descurainia sophia L. on wheat. Liu, X. G.,Lu, C. H.,Dong, F. S.,Xu, J.,Wu, Y. B.,Zheng, Y. Q.,Tian, F. J.,Wu, Y. B.. 2016

[7]A fully in vitro protocol towards large scale production of recombinant inbred lines in wheat (Triticum aestivum L.). Yao, Yan,Zhang, Ping,Lu, Zhanyuan,Liu, Hui,Yan, Guijun,Liu, Hui,Yan, Guijun.

[8]Genetic dissection of the seed dormancy trait in cultivated rice (Oryza sativa L.). Wan, JM,Jiang, L,Tang, JY,Wang, CM,Hou, MY,Jing, W,Zhang, L.

[9]Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp tritici) within France. Duan, X,Leconte, M,Hovmoller, MS,De Vallavieille-Pope, C.

[10]The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease. Wei, Xuening,Shen, Fangdi,Hong, Yantao,Rong, Wei,Du, Lipu,Liu, Xin,Xu, Huijun,Ma, Lingjian,Zhang, Zengyan,Shen, Fangdi,Ma, Lingjian.

[11]Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Kong, XY,Gu, YQ,You, FM,Dubcovsky, J,Anderson, OD.

[12]Response of wheat germplasm to infestation of english grain aphid (Hemiptera: Aphididae). Li, Fengqi,Chen, Liang,Peng, Junhua,Li, Fengqi,Kong, Lingrang,Liu, Yusheng,Wang, Hezhou,Peng, Junhua.

[13]Microsatellite marker identification of a Triticum aestivum Aegilops umbellulata substitution line with powdery mildew resistance. Zhu, Zhendong,Zhou, Ronghua,Kong, Xiuying,Kong, Xiuying,Dong, Yuchen,Jia, Jizeng. 2006

[14]Optimization of breeding methods when introducing multiple resistance genes from American to Chinese wheat. Qi, Jinfeng,Lin, Feng,Zhang, Xuecai,Yin, Changbin,Li, Huihui. 2011

[15]Mapping of a wheat resistance gene to yellow mosaic disease by amplified fragment length polymorphism and simple sequence repeat markers. Nie, H,He, ZT,Chen, XL,Han, YP,Wang, JR,Li, X,Han, CG,Yu, JL. 2005

[16]The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Zhu, Xiuliang,Yang, Kun,Wei, Xuening,Rong, Wei,Du, Lipu,Ye, Xingguo,Qi, Lin,Zhang, Zengyan,Zhang, Qiaofeng.

[17]Recurrent selection breeding by dominant male sterility for multiple abiotic stresses tolerant rice cultivars. Pang, Yunlong,Wang, Xiaoqian,Xu, Jianlong,Li, Zhikang,Pang, Yunlong,Wang, Xiaoqian,Ali, Jauhar,Pang, Yunlong,Chen, Kai,Xu, Jianlong,Xu, Jianlong,Li, Zhikang.

[18]Genetic diversity among populations and breeding lines from recurrent selection in Brassica napus as revealed by RAPD markers. Yuan, M,Zhou, Y,Liu, D. 2004

[19]Engineered Dwarf Male-Sterile Rice: A Promising Genetic Tool for Facilitating Recurrent Selection in Rice. Ansari, Afsana,Wang, Chunlian,Wang, Jian,Wang, Fujun,Gao, Ying,Tang, Yongchao,Zhao, Kaijun,Wang, Jian,Wang, Fujun,Liu, Piqing,Ansari, Afsana. 2017

[20]Comparison of evaluation methods for selection of resistance to Fusarium head blight in a recurrent selection programme in wheat (Triticum aestivum L.). Yang, ZP,Yang, XY,Huang, DC. 1999

作者其他论文 更多>>