Comparison of evaluation methods for selection of resistance to Fusarium head blight in a recurrent selection programme in wheat (Triticum aestivum L.)

文献类型: 外文期刊

第一作者: Yang, ZP

作者: Yang, ZP;Yang, XY;Huang, DC

作者机构:

关键词: Triticum aestivum;Fusarium graminearum head blight;artificial epidemic;artificial infection;inoculation method;natural infection;recurrent selection

期刊名称:PLANT BREEDING ( 影响因子:1.832; 五年影响因子:1.956 )

ISSN: 0179-9541

年卷期: 1999 年 118 卷 4 期

页码:

收录情况: SCI

摘要: The objectives of this study were to compare efficiency of evaluation for resistance to Fusarium head blight (FHB) under two inoculation methods in a recurrent selection programme. Fifty selected homozygous F-5 fertile lines, from each of five cycles (CO, C1, C2, C3 and C4) of recurrent selection, and two control cultivars were evaluated in a split-plot design in 1995 and 1996 under the soil-surface inoculation with Fusarium graminearum-colonized kernels and the single-floret inoculation with ascospore suspension. Comparison of the two inoculation methods using means, ranges, coefficients of variation, heritabilities and correlations among infected spikelet rate (ISR), reaction index (RI) and disease index (DI) indicated that FHB resistance could be evaluated with similar accuracy and precision using either of the two inoculation methods. Regressions of disease scores in the soil-surface inoculation on disease scores in the single-floret inoculation were positive and highly significant, showing a strong relationship between both inoculation methods for FHB resistance. The percentage of lines with similar performance for FHB disease scores in both inoculation methods was high. The soil-surface inoculation and single-floret inoculation appear to be useful techniques for evaluating numerous individuals of segregating population and screening advanced homozygous lines for FHB resistance in a recurrent selection programme in wheat, respectively.

分类号:

  • 相关文献

[1]Comparative aggressiveness of Microdochium nivale and M-majus and evaluation of screening methods for Fusarium seedling blight resistance in wheat cultivars. Ren, Runsheng,Ray, Rumiana V.,Ren, Runsheng,Yang, Xingping.

[2]Genetic diversity among populations and breeding lines from recurrent selection in Brassica napus as revealed by RAPD markers. Yuan, M,Zhou, Y,Liu, D. 2004

[3]Engineered Dwarf Male-Sterile Rice: A Promising Genetic Tool for Facilitating Recurrent Selection in Rice. Ansari, Afsana,Wang, Chunlian,Wang, Jian,Wang, Fujun,Gao, Ying,Tang, Yongchao,Zhao, Kaijun,Wang, Jian,Wang, Fujun,Liu, Piqing,Ansari, Afsana. 2017

[4]Improvement of resistance to Fusarium head blight by recurrent selection in an intermating breeding spring wheat population using the dominant male-sterile gene ms(2). Yang, ZP,Yang, XY,Huang, DC. 2000

[5]Recurrent selection breeding by dominant male sterility for multiple abiotic stresses tolerant rice cultivars. Pang, Yunlong,Wang, Xiaoqian,Xu, Jianlong,Li, Zhikang,Pang, Yunlong,Wang, Xiaoqian,Ali, Jauhar,Pang, Yunlong,Chen, Kai,Xu, Jianlong,Xu, Jianlong,Li, Zhikang.

[6]Chromosome sorting and its applications in common wheat (Triticum aestivum) genome sequencing. Wu SuoWei,Zheng Xu,Liu BingHua,Yang Li,Song MeiFang,Zhou Peng,Zhou Yang,Meng FanHua,Wang ShanHong,Liu HongWei,Zhai HuQu,Yang JianPing,Xiao Yang,Zheng Xu,Cai YingFan,Yang JianPing,Dolezel, Jaroslav,Song MeiFang. 2010

[7]Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Dongyun Ma,Jun Yan,Zhonghu He,Ling Wu,Xianchun Xia.

[8]Mineral element concentrations in grains of Chinese wheat cultivars. Yong Zhang,Qichao Song,Jun Yan,Jianwei Tang,Rongrong Zhao,Yueqiang Zhang,Zhonghu He,Chunqin Zou,Ivan Ortiz-Monasterio. 2010

[9]Breeding Adult Plant Resistance to Stripe Rust in Spring Bread Wheat Germplasm Adapted to Sichuan Province of China. Zou, Y. C.,Yang, W. Y.,Tang, Y. L.,He, Z. H.,Singh, R. P.. 2011

[10]Cloning of 9-cis-epoxycarotenoid dioxygenase gene (TaNCED1) from wheat and its heterologous expression in tobacco. Zhang, S. J.,Song, G. Q.,Li, Y. L.,Gao, J.,Liu, J. J.,Fan, Q. Q.,Huang, C. Y.,Sui, X. X.,Chu, X. S.,Guo, D.,Li, G. Y.. 2014

[11]Development of dominant nuclear male-sterile lines with a blue seed marker in durum and common wheat. Liu, ZQ. 2001

[12]Inheritance in hexaploid wheat of genes for hairy auricles and hairy leaf sheath derived from Aegilops tauschii Coss.. Wu, BH,Hu, XR,Ye, Y,Zhang, Y. 1999

[13]A push-pull strategy to control aphids combines intercropping with semiochemical releases. Hatt, Severin,Zhang, Yong,Chen, Julian,Xu, Qinxuan,Hatt, Severin,Lopes, Thomas,Zhang, Yong,Francis, Frederic,Hatt, Severin,Bodson, Bernard. 2018

[14]Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai 175. Lu Jia-ling,Chen Can,Liu Peng,He Zhong-hu,Xia Xian-chun,Chen Can,He Zhong-hu. 2016

[15]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[16]Molecular cytogenetic identification of Triticum aestivum Secale cereale substitution and addition lines. Li, HJ,Zhu, ZQ,Zhang, YM,Guo, BH,Wen, YX,Jia, X. 1998

[17]The effect of low water content on seed longevity. Hu, CL,Zhang, YL,Tao, M,Hu, XR,Jiang, CY. 1998

[18]Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Ma, Hong-Xiang,Bai, Gui-Hua,Lu, Wei-Zhong. 2006

[19]Variation of B Chromosome Associated with Tissue Culture in Wheat-rye Cross. Li, Hongjie,Tian, Bohong. 2009

[20]Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat, Triticum aestivum L.. Pei, Y,Pu, ZJ. 1999

作者其他论文 更多>>