Study on genetic coadaptability of wild quail populations in China

文献类型: 外文期刊

第一作者: Chang, GB

作者: Chang, GB;Chang, H;Liu, XP;Yang, ZP;Chen, GH;Zhao, WM;Ji, DJ;Xue, Y;Huang, F;Hassan, H

作者机构:

关键词: microsatellite;wild quail;genetic coadaptability;linkage;genetic disequilibrium

期刊名称:SCIENCE IN CHINA SERIES C-LIFE SCIENCES ( 影响因子:1.61; 五年影响因子:1.148 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Genetic coadaptability of wild Japanese quail, wild Common quail and Domestic quail populations in China was studied using 7 microsatellite DNA markers and Monte Carlo method to test genetic disequilibrium. The molecular effects of genetic coadaptability were analyzed through a new statistical model of neutral site. The results showed that genetic coadaptability dominated the genetic disequilibrium of the three quail populations, and totally 16.67%, 9.66% and 10.05% of non-allelic combinations were in the genetic disequilibrium in wild Japanese quail, wild Common quail and Domestic quail populations, respectively. Genetic coadaptability existed at almost all the tested sites. In the molecular point of view, genetic coadaptability plays an important role of keeping lots of polymorphisms in natural populations. Therefore, it is another key factor to the genetic disequilibrium in the population except for linkage. The results enrich the conceptions and connotations of genetic disequilibrium, and help us know more about genetic coadaptability and its effects, and lay a foundation of evaluation and protection of wild quail genetic resources in China.

分类号: Q1

  • 相关文献

[1]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[2]Mapping of clubroot (Plasmodiophora brassicae) resistance in canola (Brassica napus). Zhang, H.,Sun, R.,Zhang, H.,Strelkov, S. E.,Feng, J.,Hwang, S. -F.,Falak, I.,Huang, X..

[3]Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Lu, Yanli,Xu, Jie,Yuan, Zhimin,Lan, Hai,Rong, Tingzhao,Lu, Yanli,Xu, Yunbi,Xu, Yunbi,Shah, Trushar.

[4]Construction of a linkage map for quantitative trait loci associated with economically important traits in creeping bentgrass (Agrostis stolonifera L.). Zhang, Tifu,Ge, Min,Ye, Xiaoqing,Zhao, Han,Bughrara, Suleiman S..

[5]Genetic and cytological analysis of a new spontaneous male sterility in radish (Raphanus sativus L.). Wang, Zhi-Wei,Gao, Lei,Zhou, Yuan,Wang, Ting,Wang, Zhi-Wei,Xiang, Chang Ping,Liu, Hai Zhou,Mei, Shi Yong.

[6]Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Zhang, Haiying,Wang, Hui,Guo, Shaogui,Ren, Yi,Gong, Guoyi,Xu, Yong,Weng, Yiqun.

[7]QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Luo, Xiao,Lee, Hyun-Sook,Kim, Dong-Min,Balkunde, Sangshetty,Kang, Ju-Won,Ahn, Sang-Nag,Ji, Shi-Dong,Yuan, Ping-Rong. 2013

[8]Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Dai, LY,Lin, XH,Ye, CR,Ise, KZ,Saito, K,Kato, A,Xu, FR,Yu, TQ,Zhang, DP.

[9]SSR marker-based mapping and linkage analysis of Bombyx mori thermotolerance gene. Zhao, Yuan,Wu, Yang-Chun,Zhu, Ya-Hong,Zhao, Yuan,Zhang, Jiang.

[10]Characterization, polymorphism assessment, and database construction for microsatellites from BAC end sequences of channel catfish (Ictalurus punctatus): a resource for integration of linkage and physical maps. Somridhivej, Benjapom,Wang, Shaolin,Sha, Zhenxia,Liu, Hong,Quilang, Jonas,Xu, Peng,Li, Ping,Liu, Zhanjiang,Sha, Zhenxia,Liu, Hong,Quilang, Jonas,Hue, Zhiliang.

[11]Genetic diversity in Chinese sorghum landraces revealed by chloroplast simple sequence repeats. Li, Ruyu,Zhang, Chunqing,Li, Ruyu,Zhang, Han,Guan, Yanan,Yao, Fengxia,Song, Guoan,Wang, Jiancheng,Zhou, Xincheng.

[12]Development of microsatellite markers for genetic diversity analysis of Dendrobium loddigesii Rolfe, an endangered orchid in China. Cai, Xiaoyan,Feng, Zhenyu,Hou, Beiwei,Xing, Wenrui,Ding, Xiaoyu,Cai, Xiaoyan.

[13]An analysis of homoeologous microsatellites from Triticum urartu and Triticum monococcum. Bai, JR,Liu, KF,Jia, X,Wang, DW.

[14]Genetic diversity of Chinese indigenous sheep breeds inferred from microsatellite markers. Zhong, T.,Han, J. L.,Zhao, Q. J.,Fu, B. L.,He, X. H.,Guan, W. J.,Ma, Y. H.,Han, J. L.,Guo, J.,Jeon, J. T..

[15]Generation and characterization of 24 novel EST derived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties. Zhao, Li-Ping,Liu, Zhen,Chen, Liang,Yao, Ming-Zhe,Wang, Xin-Chao.

[16]Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp tritici) within France. Duan, X,Leconte, M,Hovmoller, MS,De Vallavieille-Pope, C.

[17]Population structure and conservation genetics of wild rice Oryza rufipogon (Poaceae): a region-wide perspective from microsatellite variation. Gao, LH.

[18]Genetic diversity analysis of major Sri Lankan goat populations using microsatellite and mitochondrial DNA D-loop variations. Silva, Pradeepa,Dematawewa, C. M. B.,Kurukulasuriya, Maheshika,Utsunomiya, Yuri T.,Garcia, Jose Fernando,Pichler, Rudolf,Periasamy, Kathiravan,Thiruvenkadan, A. K.,Ramasamy, Saravanan,Han, Jian-Lin.

[19]Isolation and characterization of polymorphic microsatellite loci from bluefin leatherjacket (Navodon septentrionalis Gunther, 1877). Xu, Gen-Bo,Tian, Yong-Sheng,Liao, Xiao-Lin,Chen, Song-Lin,Xu, Gen-Bo.

[20]Isolation and characterization of eleven microsatellite loci of Pseudobagrus truncatus in the Yangtze River. Deng, Huatang,Zeng, Xiaoyun,Deng, Huatang,Wang, Dengqiang,Duan, Xinbin,Chen, Daqing.

作者其他论文 更多>>